Advertisement

Science China Life Sciences

, Volume 61, Issue 7, pp 770–778 | Cite as

Characteristics of fecal microbiota in non-alcoholic fatty liver disease patients

  • Fan Li
  • Gang Sun
  • Zikai Wang
  • Wenming Wu
  • He Guo
  • Lihua Peng
  • Lili Wu
  • Xu Guo
  • Yunsheng Yang
Research Paper

Abstract

This study was designed to investigate the gut microbiota of patients with non-alcoholic fatty liver disease. The inclusive and exclusive criteria for NAFLD patients and healthy subjects were formulated, and detailed clinical data were collected. The genomic DNA of stool samples were extracted for 16S rDNA sequencing, and the amplified V4-region was sequenced on the Illumina Miseq platform. Metastats analysis was performed to identify the differential taxa between the groups. Redundancy analysis was used to evaluate the association between gut microbial structure and clinical variables. Thirty NAFLD patients and 37 healthy controls were involved. The 16S rDNA sequencing showed that there was a dramatic variability of the fecal microbiota among all the individuals. Metastats analysis identified eight families and 12 genera with significant differences between the two groups. When some clinical parameters, such as waist-to-hip ratio (WHR) and homeostasis model assessment of insulin resistance (HOMA-IR), were enrolled in Redundancy analysis, the distribution of the two group of samples was obviously changed. The compositional shifts in fecal bacterial communities of NAFLD patients from the healthy controls were mainly at family or genus levels. According to our Redundancy analysis, insulin resistance and obesity might be closely related to both NAFLD phenotype and intestinal microecology.

Keywords

non-alcoholic fatty liver disease bacterial microbiota 16S rDNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National High Technology Research and Development Program of China (2015AA020701).

Supplementary material

11427_2017_9303_MOESM1_ESM.docx (349 kb)
Supplementary material, approximately 349 KB.

References

  1. Amar, J., Chabo, C., Waget, A., Klopp, P., Vachoux, C., Bermúdez-Humarán, L.G., Smirnova, N., Bergé, M., Sulpice, T., Lahtinen, S., et al. (2011). Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3, 559–572.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bäckhed, F., Manchester, J.K., Semenkovich, C.F., and Gordon, J.I. (2007). Mechanisms underlying the resistance to diet-induced obesity in germfree mice. Proc Natl Acad Sci USA 104, 979–984.CrossRefPubMedGoogle Scholar
  3. Bashiardes, S., Shapiro, H., Rozin, S., Shibolet, O., and Elinav, E. (2016). Non-alcoholic fatty liver and the gut microbiota. Mol Metab 5, 782–794.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhat, U.G., Ilievski, V., Unterman, T.G., and Watanabe, K. (2014). Porphyromonas gingivalis lipopolysaccharide upregulates insulin secretion from pancreatic β cell line MIN6. J Periodontol 85, 1629–1636.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Braak, T., and Smilauer, P.N. (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New York.Google Scholar
  6. Brandl, K., and Schnabl, B. (2017). Intestinal microbiota and nonalcoholic steatohepatitis. Curr Opin Gastroenterol 33, 128–133.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Byrne, C.D., and Targher, G. (2015). NAFLD: a multisystem disease. J Hepatol 62, S47–S64.CrossRefPubMedGoogle Scholar
  8. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335–336.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P.J., Fierer, N., and Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108, 4516–4522.CrossRefPubMedGoogle Scholar
  10. Clarke, S.F., Murphy, E.F., O’Sullivan, O., Lucey, A.J., Humphreys, M., Hogan, A., Hayes, P., O’Reilly, M., Jeffery, I.B., Wood-Martin, R., et al. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920.CrossRefPubMedGoogle Scholar
  11. Comstock, L.E., and Coyne, M.J. (2003). Bacteroides thetaiotaomicron: a dynamic, niche-adapted human symbiont. Bioessays 25, 926–929.CrossRefPubMedGoogle Scholar
  12. Day, C.P., and James, O.F. (1998). Steatohepatitis: a tale of two “hits”? Gastroenterology 114, 842–845.CrossRefPubMedGoogle Scholar
  13. Edgar, R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10, 996–998.CrossRefPubMedGoogle Scholar
  14. Evans, C.C., LePard, K.J., Kwak, J.W., Stancukas, M.C., Laskowski, S., Dougherty, J., Moulton, L., Glawe, A., Wang, Y., Leone, V., et al. (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS ONE 9, e92193.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gastaldelli, A., Natali, A., Vettor, R., and Corradini, S.G. (2010). Insulin resistance, adipose depots and gut: interactions and pathological implications. Digest Liver Dis 42, 310–319.CrossRefGoogle Scholar
  16. Graessler, J., Qin, Y., Zhong, H., Zhang, J., Licinio, J., Wong, M.L., Xu, A., Chavakis, T., Bornstein, A.B., Ehrhart-Bornstein, M., et al. (2013). Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J 13, 514–522.CrossRefPubMedGoogle Scholar
  17. Hernaez, R., Lazo, M., Bonekamp, S., Kamel, I., Brancati, F.L., Guallar, E., and Clark, J.M. (2011). Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology 54, 1082–1090.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1-022–1023.CrossRefGoogle Scholar
  19. Li, Z.Z., Xue, J., Chen, P., Chen, L.Z., Yan, S.P., and Liu, L.Y. (2014). Prevalence of nonalcoholic fatty liver disease in mainland of China: a meta-analysis of published studies. J Gastroenterol Hepatol 29, 42–51.CrossRefPubMedGoogle Scholar
  20. Magoč, T., and Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Neuschwander-Tetri, B.A. (2017). Non-alcoholic fatty liver disease. BMC Med 15, 45.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Raman, M., Ahmed, I., Gillevet, P.M., Probert, C.S., Ratcliffe, N.M., Smith, S., Greenwood, R., Sikaroodi, M., Lam, V., Crotty, P., et al. (2013). Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 11, 868–875.e3.CrossRefPubMedGoogle Scholar
  23. Samuel, B.S., and Gordon, J.I. (2006). A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA 103, 10011–10016.CrossRefPubMedGoogle Scholar
  24. Serino, M., Fernández-Real, J.M., García-Fuentes, E., Fuentes, E.G., Queipo-Ortuño, M., Moreno-Navarrete, J.M., Sánchez, A., Burcelin, R., and Tinahones, F. (2013). The gut microbiota profile is associated with insulin action in humans. Acta Diabetol 50, 753–761.CrossRefPubMedGoogle Scholar
  25. Spencer, M.D., Hamp, T.J., Reid, R.W., Fischer, L.M., Zeisel, S.H., and Fodor, A.A. (2011). Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140, 976–986.CrossRefPubMedGoogle Scholar
  26. Tilg, H., and Moschen, A.R. (2010). Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836–1846.CrossRefPubMedGoogle Scholar
  27. Udayappan, S.D., Hartstra, A.V., Dallinga-Thie, G.M., and Nieuwdorp, M. (2014). Intestinal microbiota and faecal transplantation as treatment modality for insulin resistance and type 2 diabetes mellitus. Clin Exp Immunol 177, 24–29.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Vrieze, A., Out, C., Fuentes, S., Jonker, L., Reuling, I., Kootte, R.S., van Nood, E., Holleman, F., Knaapen, M., Romijn, J.A., et al. (2014). Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 60, 824–831.CrossRefPubMedGoogle Scholar
  29. Wallace, T.M., and Matthews, D.R. (2002). The assessment of insulin resistance in man. Diabet Med 19, 527–534.CrossRefPubMedGoogle Scholar
  30. Wang, B., Jiang, X., Cao, M., Ge, J., Bao, Q., Tang, L., Chen, Y., and Li, L. (2016). Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep 6, 32002.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. (2007). Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73, 5261–5267.CrossRefPubMedPubMedCentralGoogle Scholar
  32. White, J.R., Nagarajan, N., and Pop, M. (2009). Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5, e1000352.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wong, V.W.S., Tse, C.H., Lam, T.T.Y., Wong, G.L.H., Chim, A.M.L., Chu, W.C.W., Yeung, D.K.W., Law, P.T.W., Kwan, H.S., Yu, J., et al. (2013). Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis—a longitudinal study. PLoS ONE 8, e62885.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zhang, X., Zhao, Y., Zhang, M., Pang, X., Xu, J., Kang, C., Li, M., Zhang, C., Zhang, Z., Zhang, Y., et al. (2012). Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS ONE 7, e42529.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhu, J.Z., Hollis-Hansen, K., Wan, X.Y., Fei, S.J., Pang, X.L., Meng, F.D., Yu, C.H., and Li, Y.M. (2016). Clinical guidelines of non-alcoholic fatty liver disease: a systematic review. World J Gastroenterol 22, 8226–8233.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhu, L., Baker, S.S., Gill, C., Liu, W., Alkhouri, R., Baker, R.D., and Gill, S.R. (2013). Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601–609.CrossRefPubMedGoogle Scholar
  37. Zoller, H., and Tilg, H. (2016). Nonalcoholic fatty liver disease and hepatocellular carcinoma. Metabolism 65, 1151–1160.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fan Li
    • 1
    • 2
  • Gang Sun
    • 1
  • Zikai Wang
    • 1
  • Wenming Wu
    • 3
  • He Guo
    • 1
  • Lihua Peng
    • 1
  • Lili Wu
    • 1
  • Xu Guo
    • 1
  • Yunsheng Yang
    • 1
  1. 1.Department of Gastroenterology and HepatologyChinese PLA General HospitalBeijingChina
  2. 2.Department of Liver DiseasePLA Army General HospitalBeijingChina
  3. 3.Department of GastroenterologyGeneral Hospital of Jinan Military RegionJinanChina

Personalised recommendations