Advertisement

Science China Life Sciences

, Volume 61, Issue 4, pp 476–482 | Cite as

Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing

  • Huijie Qi
  • Lihong Niu
  • Jie Zhang
  • Jian Chen
  • Shujie Wang
  • Jingjing Yang
  • Siyi Guo
  • Tom Lawson
  • Bingyang Shi
  • Chunpeng Song
Research Paper

Abstract

Surface plasmon resonance (SPR) nanosensors based on metallic nanohole arrays have been widely reported to detect binding interactions in biological specimens. A simple and effective method for constructing nanoscale arrays is essential for the development of SPR nanosensors. In this work, we report a one-step method to fabricate nanohole arrays by thermal nanoimprinting in the matrix of IPS (Intermediate Polymer Stamp). No additional etching process or supporting substrate is required. The preparation process is simple, time-saving and compatible for roll-to-roll process, potentially allowing mass production. Moreover, the nanohole arrays were integrated into detection platform as SPR sensors to investigate different types of biological binding interactions. The results demonstrate that our one-step method can be used to efficiently fabricate large-area and uniform nanohole arrays for biochemical sensing.

Keywords

gold nanohole arrays one-step method nanoimprinting nanosensor biomolecular binding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31430061, 61401149, and U1604177), Ministry of Agriculture of China (2016ZX08009-003) and the Program of China’s 1000-talents Plan.

References

  1. Altintas, Z., Uludag, Y., Gurbuz, Y., and Tothill, I. (2012). Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules. Anal Chim Acta 712, 138–144.CrossRefPubMedGoogle Scholar
  2. Butenko, M.A., Wildhagen, M., Albert, M., Jehle, A., Kalbacher, H., Aalen, R.B., and Felix, G. (2014). Tools and strategies to match peptide-ligand receptor pairs. Plant Cell 26, 1838–1847.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cetin, A.E., Coskun, A.F., Galarreta, B.C., Huang, M., Herman, D., Ozcan, A., and Altug, H. (2014). Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci Appl 3, e122–e122.CrossRefGoogle Scholar
  4. Ebbesen, T.W., Ebbesen, T.W., Lezec, H.J., Lezec, H.J., Ghaemi, H.F., Ghaemi, H.F., Thio, T., Thio, T., Wolff, P.A., and Wolff, P.A. (1998). Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669.CrossRefGoogle Scholar
  5. Fischer, M.J. (2010). Amine coupling through EDC/NHS: a practical approach. Methods Mol Biol 627, 55–73.CrossRefPubMedGoogle Scholar
  6. Hu, W.P., Hsu, H.Y., Chiou, A., Tseng, K.Y., Lin, H.Y., Chang, G.L., and Chen, S.J. (2006). Immunodetection of pentamer and modified C-reactive protein using surface plasmon resonance biosensing. Biosens Bioelectron 21, 1631–1637.CrossRefPubMedGoogle Scholar
  7. Im, H., Shao, H., Park, Y.I., Peterson, V.M., Castro, C.M., Weissleder, R., and Lee, H. (2014). Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32, 490–495.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Jia, P., Jia, P., Jiang, H., Jiang, H., Sabarinathan, J., Sabarinathan, J., Yang, J., and Yang, J. (2013). Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance. Nanotechnology 24, 195501.CrossRefPubMedGoogle Scholar
  9. Kooy, N., Kooy, N., Mohamed, K., Mohamed, K., Pin, L.T., Pin, L.T., Guan, O.S., and Guan, O.S. (2014). A review of roll-to-roll nanoimprint lithography. Nanoscale Res Lett 9, 320.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Li, W., Zhang, L., Zhou, J., and Wu, H. (2015). Well-designed metal nanostructured arrays for label-free plasmonic biosensing. J Mater Chem C 3, 6479–6492.CrossRefGoogle Scholar
  11. Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M. (2005). Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105, 1103–1170.CrossRefPubMedGoogle Scholar
  12. Lucas, B.D., Kim, J.S., Chin, C., and Guo, L.J. (2008). Nanoimprint lithography based approach for the fabrication of large-area, uniformlyoriented plasmonic arrays. Adv Mater 20, 1129–1134.CrossRefGoogle Scholar
  13. Machui, F., Hösel, M., Li, N., Spyropoulos, G.D., Ameri, T., Søndergaard, R.R., Jørgensen, M., Scheel, A., Gaiser, D., Kreul, K., et al. (2014). Cost analysis of roll-to-roll fabricated ITO free single and tandem organic solar modules based on data from manufacture. Energy Environ Sci 7, 2792–2802.CrossRefGoogle Scholar
  14. Martín-Moreno, L., García-Vidal, F.J., Lezec, H.J., Pellerin, K.M., Thio, T., Pendry, J.B., and Ebbesen, T.W. (2001). Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86, 1114–1117.CrossRefPubMedGoogle Scholar
  15. Medzhitov, R. (2007). Recognition of microorganisms and activation of the immune response. Nature 449, 819–826.CrossRefPubMedGoogle Scholar
  16. Melcher, K., Melcher, K., Ng, L.M., Ng, L.M., Zhou, X.E., Zhou, X.E., Soon, F.F., Soon, F.F., Xu, Y., Xu, Y., et al. (2009). A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature 462, 602–608.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Monteiro, J.P., de Oliveira, J.H., Radovanovic, E., Brolo, A.G., and ·Girotto, E.M. (2016). Microfluidic plasmonic biosensor for breast cancer antigen detection. Plasmonics 11, 45–51.CrossRefGoogle Scholar
  18. Nakamoto, K., Kurita, R., and Niwa, O. (2012). Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique. Anal Chem 84, 3187–3191.CrossRefPubMedGoogle Scholar
  19. Nakamoto, K., Nakamoto, K., Kurita, R., Kurita, R., Niwa, O., Niwa, O., Fujii, T., Fujii, T., Nishida, M., and Nishida, M. (2011). Development of a mass-producible on-chip plasmonic nanohole array biosensor. Nanoscale 3, 5067–5075.CrossRefPubMedGoogle Scholar
  20. Orphanides, G., and Reinberg, D. (2002). A unified theory of gene expression. Cell 108, 439–451.CrossRefPubMedGoogle Scholar
  21. Rich, R.L., Hoth, L.R., Geoghegan, K.F., Brown, T.A., LeMotte, P.K., Simons, S.P., Hensley, P., and Myszka, D.G. (2002). Kinetic analysis of estrogen receptor/ligand interactions. Proc Natl Acad Sci USA 99, 8-562–8567.CrossRefGoogle Scholar
  22. Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.Y., Jamin, M., Cutler, S.R., Rodriguez, P.L., and Márquez, J.A. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665–668.CrossRefPubMedGoogle Scholar
  23. Tian, M., von Dahl, C.C., Liu, P.P., Friso, G., van Wijk, K.J., and Klessig, D.F. (2012). The combined use of photoaffinity labeling and surface plasmon resonance-based technology identifies multiple salicylic acidbinding proteins. Plant J 72, 1027–1038.CrossRefPubMedGoogle Scholar
  24. Tokel, O., Inci, F., and Demirci, U. (2014). Advances in plasmonic technologies for point of care applications. Chem Rev 114, 5728–5752.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Valsecchi, C., Jones, T., Wang, C., Lochbihler, H., Menezes, J.W., and Brolo, A.G. (2016). Low-cost leukemic serum marker screening using large area nanohole arrays on plastic substrates. ACS Sens 1, 1103–1109.CrossRefGoogle Scholar
  26. van der Merwe, P.A., and Davis, S.J. (2003). Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol 21, 659–684.CrossRefPubMedGoogle Scholar
  27. Wang, S.Q., Chinnasamy, T., Lifson, M.A., Inci, F., and Demirci, U. (2016). Flexible substrate-based devices for point-of-care diagnostics. Trends Biotech 34, 909–921.CrossRefGoogle Scholar
  28. Wegner, G.J., Lee, H.J., Marriott, G., and Corn, R.M. (2003). Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein−protein and protein−DNA interactions. Anal Chem 75, 4740–4746.CrossRefPubMedGoogle Scholar
  29. Yanik, A.A., Huang, M., Kamohara, O., Artar, A., Geisbert, T.W., Connor, J.H., and Altug, H. (2010). An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 10, 4962–4969.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Huijie Qi
    • 1
  • Lihong Niu
    • 2
  • Jie Zhang
    • 1
  • Jian Chen
    • 3
  • Shujie Wang
    • 2
  • Jingjing Yang
    • 2
  • Siyi Guo
    • 1
  • Tom Lawson
    • 4
  • Bingyang Shi
    • 1
    • 3
  • Chunpeng Song
    • 1
  1. 1.State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life SciencesHenan UniversityKaifengChina
  2. 2.Key Laboratory for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
  3. 3.International Joint Centre for Biomedical Innovation, School of Life SciencesHenan UniversityKaifengChina
  4. 4.ARC Centre of Nanoscale BiophotonicsMacquarie UniversitySydneyAustralia

Personalised recommendations