Science China Life Sciences

, Volume 61, Issue 4, pp 427–435 | Cite as

Morphology of living cells cultured on nanowire arrays with varying nanowire densities and diameters

  • Zhen Li
  • Henrik Persson
  • Karl Adolfsson
  • Stina Oredsson
  • Christelle N. PrinzEmail author
Research Paper


Vertical nanowire arrays are increasingly investigated for their applications in steering cell behavior. The geometry of the array is an important parameter, which influences the morphology and adhesion of cells. Here, we investigate the effects of array geometry on the morphology of MCF7 cancer cells and MCF10A normal-like epithelial cells. Different gallium phosphide nanowire array-geometries were produced by varying the nanowire density and diameter. Our results show that the cell size is smaller on nanowires compared to flat gallium phosphide. The cell area decreases with increasing the nanowire density on the substrate. We observed an effect of the nanowire diameter on MCF10A cells, with a decreased cell area on 40 nm diameter nanowires, compared to 60 and 80 nm diameter nanowires in high-density arrays. The focal adhesion morphology depends on the extent to which cells are contacting the substrate. For low nanowire densities and diameters, cells are lying on the substrate and we observed large focal adhesions at the cell edges. In contrast, for high nanowire densities and diameters, cells are lying on top of the nanowires and we observed point-like focal adhesions distributed over the whole cell. Our results constitute a step towards the ability to fine-tune cell behavior on nanowire arrays.


nanowires cell morphology diameter density aspect ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Swedish Research Council (VR), NanoLund, the Crafoord Foundation, the China Scholarship Council (CSC) and by a Donation from Carolina LePrince with the “Kalenderflickorna” and Associated Sponsors. The nanowire array fabrication was performed at Lund Nano Lab.


  1. Bonde, S., Berthing, T., Madsen, M.H., Andersen, T.K., Buch-Månson, N., Guo, L., Li, X., Badique, F., Anselme, K., Nygård, J., et al. (2013). Tuning InAs nanowire density for HEK293 cell viability, adhesion, and morphology: perspectives for nanowire-based biosensors. ACS Appl Mater Interf 5, 10510–10519.CrossRefGoogle Scholar
  2. Bonde, S., Buch-Månson, N., Rostgaard, K.R., Andersen, T.K., Berthing, T., and Martinez, K.L. (2014). Exploring arrays of vertical one-dimensional nanostructures for cellular investigations. Nanotechnology 25, 362001.CrossRefPubMedGoogle Scholar
  3. Buch-Månson, N., Bonde, S., Bolinsson, J., Berthing, T., Nygård, J., and Martinez, K.L. (2015). Towards a better prediction of cell settling on nanostructure arrays-simple means to complicated ends. Adv Funct Mater 25, 3246–3255.CrossRefGoogle Scholar
  4. Buch-Månson, N., Kang, D.-H., Kim, D., Lee, K.E., Yoon, M.-H., and Martinez, K.L. (2017). Mapping cell behavior across a wide range of vertical silicon nanocolumn densities. Nanoscale 9, 5517–5527.CrossRefPubMedGoogle Scholar
  5. Dabkowska, A.P., Niman, C.S., Piret, G., Persson, H., Wacklin, H.P., Linke, H., Prinz, C.N., and Nylander, T. (2014). Fluid and highly curved model membranes on vertical nanowire arrays. Nano Lett 14, 4286–4292.CrossRefPubMedGoogle Scholar
  6. Elnathan, R., Kwiat, M., Patolsky, F., and Voelcker, N.H. (2014). Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 9, 172–196.CrossRefGoogle Scholar
  7. Hällström, W., Mårtensson, T., Prinz, C., Gustavsson, P., Montelius, L., Samuelson, L., and Kanje, M. (2007). Gallium phosphide nanowires as a substrate for cultured neurons. Nano Lett 7, 2960–2965.CrossRefPubMedGoogle Scholar
  8. Hällström, W., Lexholm, M., Suyatin, D.B., Hammarin, G., Hessman, D., Samuelson, L., Montelius, L., Kanje, M., and Prinz, C.N. (2010). Fifteen- Piconewton force detection from neural growth cones using nanowire arrays. Nano Lett 10, 782–787.CrossRefPubMedGoogle Scholar
  9. Hammarin, G., Persson, H., Dabkowska, A.P., and Prinz, C.N. (2014). Enhanced laminin adsorption on nanowires compared to flat surfaces. Colloids Surfs B-Biointerf 122, 85–89.CrossRefGoogle Scholar
  10. Hjort, M., Bauer, M., Gunnarsson, S., Mårsell, E., Zakharov, A.A., Karlsson, G., Sanfins, E., Prinz, C.N., Wallenberg, R., Cedervall, T., et al. (2016). Electron microscopy imaging of proteins on gallium phosphide semiconductor nanowires. Nanoscale 8, 3936–3943.CrossRefPubMedGoogle Scholar
  11. Hu, W., Crouch, A.S., Miller, D., Aryal, M., and Luebke, K.J. (2010). Inhibited cell spreading on polystyrene nanopillars fabricated by nanoimprinting and in situ elongation. Nanotechnology 21, 385301.CrossRefPubMedGoogle Scholar
  12. Li, Z., Persson, H., Adolfsson, K., Abariute, L., Borgström, M.T., Hessman, D., Åström, K., Oredsson, S., and Prinz, C.N. (2017). Cellular traction forces: a useful parameter in cancer research. Nanoscale 9, 19039–19044.CrossRefPubMedGoogle Scholar
  13. Persson, H., Beech, J.P., Samuelson, L., Oredsson, S., Prinz, C.N., and Tegenfeldt, J.O. (2012). Vertical oxide nanotubes connected by subsurface microchannels. Nano Res 5, 190–198.CrossRefGoogle Scholar
  14. Persson, H., Købler, C., Mølhave, K., Samuelson, L., Tegenfeldt, J.O., Oredsson, S., and Prinz, C.N. (2013). Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small 9, 4006–4016.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Persson, H., Li, Z., Tegenfeldt, J.O., Oredsson, S., and Prinz, C.N. (2015). From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour. Sci Rep 5, 18535.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Piret, G., Perez, M.T., and Prinz, C.N. (2013). Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture. Biomaterials 34, 875–887.CrossRefPubMedGoogle Scholar
  17. Piret, G., Perez, M.T., and Prinz, C.N. (2015). Support of neuronal growth over Glial growth and guidance of optic nerve axons by vertical nanowire arrays. ACS Appl Mater Interf 7, 18944–18948.CrossRefGoogle Scholar
  18. Prinz, C., Hällström, W., Mårtensson, T., Samuelson, L., Montelius, L., and Kanje, M. (2008). Axonal guidance on patterned free-standing nanowire surfaces. Nanotechnology 19, 345101.CrossRefPubMedGoogle Scholar
  19. Prinz, C.N. (2015). Interactions between semiconductor nanowires and living cells. J Phys Condens Matter 27, 233103.CrossRefPubMedGoogle Scholar
  20. Shalek, A.K., Robinson, J.T., Karp, E.S., Lee, J.S., Ahn, D.R., Yoon, M.H., Sutton, A., Jorgolli, M., Gertner, R.S., Gujral, T.S., et al. (2010). Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc Natl Acad Sci USA 107, 1870–1875.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Sköld, N., Hällström, W., Persson, H., Montelius, L., Kanje, M., Samuelson, L., Prinz, C.N., and Tegenfeldt, J.O. (2010). Nanofluidics in hollow nanowires. Nanotechnology 21, 155301.CrossRefPubMedGoogle Scholar
  22. Suyatin, D.B., Hallstrom, W., Samuelson, L., Montelius, L., Prinz, C.N., and Kanje, M. (2009). Gallium phosphide nanowire arrays and their possible application in cellular force investigations. J Vac Sci Technol B 27, 3092–3094.CrossRefGoogle Scholar
  23. Taskin, M.B., Sasso, L., Dimaki, M., Svendsen, W.E., and Castillo-León, J. (2013). Combined cell culture-biosensing platform using vertically aligned patterned peptide nanofibers for cellular studies. ACS Appl Mater Interf 5, 3323–3328.CrossRefGoogle Scholar
  24. VanDersarl, J.J., Xu, A.M., and Melosh, N.A. (2012). Nanostraws for direct fluidic intracellular access. Nano Lett 12, 3881–3886.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhen Li
    • 1
    • 2
  • Henrik Persson
    • 1
    • 2
  • Karl Adolfsson
    • 1
    • 2
  • Stina Oredsson
    • 3
  • Christelle N. Prinz
    • 1
    • 2
    Email author
  1. 1.Division of Solid State PhysicsLund UniversityLundSweden
  2. 2.NanoLundLund UniversitySweden
  3. 3.Department of BiologyLundSweden

Personalised recommendations