Science China Life Sciences

, Volume 61, Issue 4, pp 415–426 | Cite as

Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics

  • Xueting Pan
  • Hongyu Wang
  • Shunhao Wang
  • Xiao Sun
  • Lingjuan Wang
  • Weiwei Wang
  • Heyun Shen
  • Huiyu Liu


Sonodynamic therapy (SDT) is a promising non-invasive therapeutic modality. Compared to photo-inspired therapy, SDT provides many opportunities and benefits, including deeper tissue penetration, high precision, less side effects, and good patient compliance. Thanks to the facile engineerable nature of nanotechnology, nanoparticles-based sonosensitizers exhibit predominant advantages, such as increased SDT efficacy, binding avidity, and targeting specificity. This review aims to summarize the possible mechanisms of SDT, which can be expected to provide the theoretical basis for SDT development in the future. We also extensively discuss nanoparticle-assisted sonosensitizers to enhance the outcome of SDT. Additionally, we focus on the potential strategy of combinational SDT with other therapeutic modalities and discuss the limitations and challenges of SDT toward clinical applications.


sonodynamic therapy mechanisms nano-sonosensitizers combination therapy nanotheranostics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51572271, 51772018), National Basic Research Program of China (2016YFA0201500) and Fundamental Research Funds for the Central Universities (buctrc201610, JD1609, PYBZ1705).


  1. Alekseev, S., Korytko, D., Iazykov, M., Khainakov, S., and Lysenko, V. (2015). Electrochemical synthesis of carbon fluorooxide nanoparticles from 3C-SiC substrates. J Phys Chem C 119, 20503–20514.CrossRefGoogle Scholar
  2. Ando, H., Feril Jr., L.B., Kondo, T., Tabuchi, Y., Ogawa, R., Zhao, Q.L., Cui, Z.G., Umemura, S., Yoshikawa, H., and Misaki, T. (2006). An echo-contrast agent, Levovist, lowers the ultrasound intensity required to induce apoptosis of human leukemia cells. Cancer Lett 242, 37–45.PubMedCrossRefGoogle Scholar
  3. Ashush, H., Rozenszajn, L.A., Blass, M., Barda-Saad, M., Azimov, D., Radnay, J., Zipori, D., and Rosenschein, U. (2000). Apoptosis induction of human myeloid leukemic cells by ultrasound exposure. Cancer Res 60, 1014–1020.PubMedGoogle Scholar
  4. Bai, W.K., Shen, E., and Hu, B. (2012). Induction of the apoptosis of cancer cell by sonodynamic therapy: a review. Chin J Cancer Res 24, 368–373.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bertrand, N., Wu, J., Xu, X., Kamaly, N., and Farokhzad, O.C. (2014). Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliver Rev 66, 2–25.CrossRefGoogle Scholar
  6. Canaparo, R., Varchi, G., Ballestri, M., Foglietta, F., Sotgiu, G., Guerrini, A., Francovich, A., Civera, P., Frairia, R., and Serpe, L. (2013). Polymeric nanoparticles enhance the sonodynamic activity of meso-tetrakis (4-sulfonatophenyl) porphyrin in an in vitro neuroblastoma model. Int J Nanomed 8, 4247–4263.Google Scholar
  7. Chen, H., Zhou, X., Gao, Y., Zheng, B., Tang, F., and Huang, J. (2014). Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today 19, 502–509.PubMedCrossRefGoogle Scholar
  8. Chen, M.J., Xu, A., He, W., Ma, W., and Shen, S. (2017). Ultrasound triggered drug delivery for mitochondria targeted sonodynamic therapy. J Drug Deliver Sci Tech 39, 501–507.CrossRefGoogle Scholar
  9. Chen, W.S., Brayman, A.A., Matula, T.J., Crum, L.A., and Miller, M.W. (2003). The pulse length-dependence of inertial cavitation dose and hemolysis. Ultrasound Med Biol 29, 739–748.PubMedCrossRefGoogle Scholar
  10. Chen, Y.W., Liu, T.Y., Chang, P.H., Hsu, P.H., Liu, H.L., Lin, H.C., and Chen, S.Y. (2016). A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale 8, 12648–12657.PubMedCrossRefGoogle Scholar
  11. Cheng, L., Wang, C., Feng, L., Yang, K., and Liu, Z. (2014). Functional nanomaterials for phototherapies of cancer. Chem Rev 114, 10869–10939.PubMedCrossRefGoogle Scholar
  12. Dai, C., Zhang, S., Liu, Z., Wu, R., and Chen, Y. (2017). Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano 11, 9467–9480.PubMedCrossRefGoogle Scholar
  13. Deepagan, V.G., You, D.G., Um, W., Ko, H., Kwon, S., Choi, K.Y., Yi, G. R., Lee, J.Y., Lee, D.S., Kim, K., et al. (2016). Long-circulating Au- TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett 16, 6257–6264.CrossRefGoogle Scholar
  14. Ding, Y., Song, Z., Liu, Q., Wei, S., Zhou, L., Zhou, J., and Shen, J. (2017). An enhanced chemotherapeutic effect facilitated by sonication of MSN. Dalton Trans 46, 11875–11883.PubMedCrossRefGoogle Scholar
  15. Duvshani-Eshet, M., Benny, O., Morgenstern, A., and Machluf, M. (2007). Therapeutic ultrasound facilitates antiangiogenic gene delivery and inhibits prostate tumor growth. Mol Cancer Therapeut 6, 2371–2382.CrossRefGoogle Scholar
  16. Escoffre, J.M., Zeghimi, A., Novell, A., and Bouakaz, A. (2013). In-vivo gene delivery by sonoporation: recent progress and prospects. Curr Gene Ther 13, 2–14.PubMedCrossRefGoogle Scholar
  17. Fan, C.H., Ting, C.Y., Lin, H.J., Wang, C.H., Liu, H.L., Yen, T.C., and Yeh, C.K. (2013). SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials 34, 3706–3715.PubMedCrossRefGoogle Scholar
  18. Feril, L.B.Jr., Kondo, T., Ogawa, R., and Zhao, Q.L. (2003a). Dose-dependent inhibition of ultrasound-induced cell killing and free radical production by carbon dioxide. Ultrasons Sonochem 10, 81–84.CrossRefGoogle Scholar
  19. Feril, L.B.Jr., Kondo, T., Zhao, Q.L., Ogawa, R., Tachibana, K., Kudo, N., Fujimoto, S., and Nakamura, S. (2003b). Enhancement of ultrasoundinduced apoptosis and cell lysis by echo-contrast agents. Ultrasound Med Biol 29, 331–337.PubMedCrossRefGoogle Scholar
  20. Feril, L.B., Tsuda, Y., Kondo, T., Zhao, Q.L., Ogawa, R., Cui, Z.G., Tsukada, K., and Riesz, P. (2004b). Ultrasound-induced killing of monocytic U937 cells enhanced by 2,2′-azobis(2-amidinopropane) dihydrochloride. Cancer Sci 95, 181–185.PubMedCrossRefGoogle Scholar
  21. Feril, L.B.Jr., Kondo, T., Takaya, K., and Riesz, P. (2004a). Enhanced ultrasound-induced apoptosis and cell lysis by a hypotonic medium. Int J Radiat Biol 80, 165–175.PubMedCrossRefGoogle Scholar
  22. Gordon, M.S., Mendelson, D.S., and Kato, G. (2010). Tumor angiogenesis and novel antiangiogenic strategies. Int J Cancer 126, 1777–1787.PubMedCrossRefGoogle Scholar
  23. Grüll, H., and Langereis, S. (2012). Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release 161, 317–327.PubMedCrossRefGoogle Scholar
  24. Harada, A., Ono, M., Yuba, E., and Kono, K. (2013). Titanium dioxide nanoparticle-entrapped polyion complex micelles generate singlet oxygen in the cells by ultrasound irradiation for sonodynamic therapy. Biomater Sci 1, 65–73.CrossRefGoogle Scholar
  25. Harada, Y., Ogawa, K., Irie, Y., Endo, H., Feril Jr., L.B., Uemura, T., and Tachibana, K. (2011). Ultrasound activation of TiO2 in melanoma tumors. J Control Release 149, 190–195.PubMedCrossRefGoogle Scholar
  26. Harrison, G.H., Balcer-Kubiczek, E.K., and Gutierrez, P.L. (1996). In vitro mechanisms of chemopotentiation by tone-burst ultrasound. Ultrasound Med Biol 22, 355–362.PubMedCrossRefGoogle Scholar
  27. Huang, P., Qian, X., Chen, Y., Yu, L., Lin, H., Wang, L., Zhu, Y., and Shi, J. (2017). Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J Am Chem Soc 139, 1275–1284.PubMedCrossRefGoogle Scholar
  28. Huang, Z., Moseley, H., and Bown, S. (2010). Rationale of combined PDT and SDT modalities for treating cancer patients in terminal stage: the proper use of photosensitizer. Integr Cancer Ther 9, 317–319.PubMedCrossRefGoogle Scholar
  29. Hutcheson, J.D., Schlicher, R.K., Hicks, H.K., and Prausnitz, M.R. (2010). Saving cells from ultrasound-induced apoptosis: quantification of cell death and uptake following sonication and effects of targeted calcium chelation. Ultrasound Med Biol 36, 1008–1021.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hwang, J.H., Brayman, A.A., Reidy, M.A., Matula, T.J., Kimmey, M.B., and Crum, L.A. (2005). Vascular effects induced by combined 1-MHz ultrasound and microbubble contrast agent treatments in vivo. Ultrasound Med Biol 31, 553–564.PubMedCrossRefGoogle Scholar
  31. Inui, T., Makita, K., Miura, H., Matsuda, A., Kuchiike, D., Kubo, K., Mette, M., Uto, Y., Nishikata, T., and Hori, H. (2014). Case report: a breast cancer patient treated with GcMAF, sonodynamic therapy and hormone therapy. Anticancer Res 34, 4589–4593.PubMedGoogle Scholar
  32. Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., and Guo, X. (2005). Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39, 1378–13–83.Google Scholar
  33. Jin, Z., Miyoshi, N., Ishiguro, K., Umemura, S., Kawabata, K., Yumita, N., Sakata, I., Takaoka, K., Udagawa, T., Nakajima, S., et al. (2000). Combination effect of photodynamic and sonodynamic therapy on experimental skin squamous cell carcinoma in C3H/HeN mice. J Dermatol 27, 294–306.PubMedCrossRefGoogle Scholar
  34. Juffermans, L.J.M., Dijkmans, P.A., Musters, R.J.P., Visser, C.A., and Kamp, O. (2006). Transient permeabilization of cell membranes by ultrasound- exposed microbubbles is related to formation of hydrogen peroxide. Am J Physiol Heart Circ Physiol 291, H1595–H1601.PubMedCrossRefGoogle Scholar
  35. Konan, Y.N., Gurny, R., and Allémann, E. (2002). State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 66, 89–106.PubMedCrossRefGoogle Scholar
  36. Konofagou, E.E. (2012). Optimization of the ultrasound-induced bloodbrain barrier opening. Theranostics 2, 1223–1237.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kotopoulis, S., Dimcevski, G., Helge Gilja, O., Hoem, D., and Postema, M. (2013). Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: a clinical case study. Med Phys 40, 072902.PubMedCrossRefGoogle Scholar
  38. Kumon, R.E., Aehle, M., Sabens, D., Parikh, P., Han, Y.W., Kourennyi, D., and Deng, C.X. (2009). Spatiotemporal effects of sonoporation measured by real-time calcium imaging. Ultrasound Med Biol 35, 494–506.PubMedCrossRefGoogle Scholar
  39. Lagneaux, L., de Meulenaer, E.C., Delforge, A., Dejeneffe, M., Massy, M., Moerman, C., Hannecart, B., Canivet, Y., Lepeltier, M.F., and Bron, D. (2002). Ultrasonic low-energy treatment. Exp Hematol 30, 1293–1301.PubMedCrossRefGoogle Scholar
  40. Li, S.Q., Zhu, R.R., Zhu, H., Xue, M., Sun, X.Y., Yao, S.D., and Wang, S.L. (2008). Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food Chem Toxicol 46, 3626–3631.PubMedCrossRefGoogle Scholar
  41. Liu, R., Zhang, Q., Lang, Y., Peng, Z., and Li, L. (2017). Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagnosis Photodynamic Ther 19, 159–166.CrossRefGoogle Scholar
  42. Madanshetty, S.I., and Apfel, R.E. (1991). Acoustic microcavitation: enhancement and applications. J Acoust Soc Am 90, 1508–1514.PubMedCrossRefGoogle Scholar
  43. Mano, S.S., Kanehira, K., Sonezaki, S., and Taniguchi, A. (2012). Effect of polyethylene glycol modification of TiO2 nanoparticles on cytotoxicity and gene expressions in human cell lines. Int J Mol Sci 13, 3703–3717.PubMedPubMedCentralCrossRefGoogle Scholar
  44. McDannold, N., Arvanitis, C.D., Vykhodtseva, N., and Livingstone, M.S. (2012). Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res 72, 3652–3663.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Meidani, A.R.N., and Hasan, M. (2004). Mathematical and physical modelling of bubble growth due to ultrasound. Appl Math Model 28, 333–351.CrossRefGoogle Scholar
  46. Miller, M.W., Luque, A.E., Battaglia, L.F., Mazza, S., and Everbach, E.C. (2003a). Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: 1. HIV macrocytosis (cell size). Ultrasound Med Biol 29, 77–91.PubMedCrossRefGoogle Scholar
  47. Miller, M.W., Battaglia, L.F., and Mazza, S. (2003b). Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: medium tonicity. Ultrasound Med Biol 29, 713–724.PubMedCrossRefGoogle Scholar
  48. Miller, M.W., Everbach, E.C., Miller, W.M., and Battaglia, L.F. (2003c). Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: 2. medium dissolved gas (pO2) content. Ultrasound Med Biol 29, 93–102.PubMedCrossRefGoogle Scholar
  49. Miyoshi, N., Mišík, V., Fukuda, M., Riesz, P., and Misik, V. (1995). Effect of gallium-porphyrin analogue ATX-70 on nitroxide formation from a cyclic secondary amine by ultrasound: on the mechanism of sonodynamic activation. Radiat Res 143, 194–202.PubMedCrossRefGoogle Scholar
  50. Miyoshi, N., Kundu, S.K., Tuziuti, T., Yasui, K., Shimada, I., and Ito, Y. (2016). Combination of sonodynamic and photodynamic therapy against cancer would be effective through using a regulated size of nanoparticles. Nanosci Nanoeng 4, 1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Mizrahi, N., Zhou, E.H., Lenormand, G., Krishnan, R., Weihs, D., Butler, J. P., Weitz, D.A., Fredberg, J.J., and Kimmel, E. (2012). Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter 8, 2438–2443.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mo, S., Coussios, C.C., Seymour, L., and Carlisle, R. (2012). Ultrasoundenhanced drug delivery for cancer. Expert Opin Drug Deliver 9, 1525–1538.CrossRefGoogle Scholar
  53. Naghibi, S., Madaah Hosseini, H.R., and Faghihi Sani, M.A. (2013). Colloidal stability of dextran and dextran/poly ethylene glycol coated TiO2 nanoparticles by hydrothermal assisted sol-gel method. Ceramics Int 39, 8377–8384.CrossRefGoogle Scholar
  54. Naghibi, S., Madaah Hosseini, H.R., Faghihi Sani, M.A., Shokrgozar, M. A., and Mehrjoo, M. (2014). Mortality response of folate receptoractivated, PEG-functionalized TiO2 nanoparticles for doxorubicin loading with and without ultraviolet irradiation. Ceramics Int 40, 5481–5488.CrossRefGoogle Scholar
  55. Nie, F., Xu, H.X., Lu, M.D., Wang, Y., and Tang, Q. (2008). Anti-angiogenic gene therapy for hepatocellular carcinoma mediated by microbubble-enhanced ultrasound exposure: an in vivo experimental study. J Drug Target 16, 389–395.PubMedCrossRefGoogle Scholar
  56. Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S.I., Tsutsumi, Y., and Yagi, K. (2009). Silica nanoparticles as hepatotoxicants. Eur J Pharm BioPharm 72, 496–501.PubMedCrossRefGoogle Scholar
  57. Osaki, T., Yokoe, I., Uto, Y., Ishizuka, M., Tanaka, T., Yamanaka, N., Kurahashi, T., Azuma, K., Murahata, Y., Tsuka, T., et al. (2016). Bleomycin enhances the efficacy of sonodynamic therapy using aluminum phthalocyanine disulfonate. Ultrasons Sonochem 28, 161–168.CrossRefGoogle Scholar
  58. Osminkina, L.A., Nikolaev, A.L., Sviridov, A.P., Andronova, N.V., Tamarov, K.P., Gongalsky, M.B., Kudryavtsev, A.A., Treshalina, H.M., and Timoshenko, V.Y. (2015). Porous silicon nanoparticles as efficient sensitizers for sonodynamic therapy of cancer. Microporous Mesoporous Mater 210, 169–175.CrossRefGoogle Scholar
  59. Ozawa, K., Emori, M., Yamamoto, S., Yukawa, R., Yamamoto, S., Hobara, R., Fujikawa, K., Sakama, H., and Matsuda, I. (2014). Electron-hole recombination time at TiO2 single-crystal surfaces: influence of surface band bending. J Phys Chem Lett 5, 1953–1957.PubMedCrossRefGoogle Scholar
  60. Pecha, R., and Gompf, B. (2000). Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Phys Rev Lett 84, 1328–1330.PubMedCrossRefGoogle Scholar
  61. Qian, X., Zheng, Y., and Chen, Y. (2016). Micro/nanoparticle-augmented sonodynamic therapy (SDT): breaking the depth shallow of photoactivation. Adv Mater 28, 8097–8129.PubMedCrossRefGoogle Scholar
  62. Riesz, P., and Christman, C. (1986). Sonochemical free radical formation in aqueous solutions. In: Federation Proceedings, P., Riesz, and C., Christman. (Maryland, The Federation), pp. 2485–2492.Google Scholar
  63. Rosenthal, I., Sostaric, J.Z., and Riesz, P. (2004). Sonodynamic therapy-a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem 11, 349–363.PubMedGoogle Scholar
  64. Saad, A.H., and Hahn, G.M. (1992). Ultrasound-enhanced effects of adriamycin against murine tumors. Ultrasound Med Biol 18, 715–723.PubMedCrossRefGoogle Scholar
  65. Sazgarnia, A., Shanei, A., Eshghi, H., Hassanzadeh-Khayyat, M., Esmaily, H., and Shanei, M.M. (2013). Detection of sonoluminescence signals in a gel phantom in the presence of Protoporphyrin IX conjugated to gold nanoparticles. Ultrasonics 53, 29–35.PubMedCrossRefGoogle Scholar
  66. Shanei, A., Sazgarnia, A., Meibodi, N.T., Eshghi, H., Hassanzadeh-Khayyat, M., Esmaily, H., and Kakhki, N.A. (2012). Sonodynamic therapy using protoporphyrin IX conjugated to gold nanoparticles: an in vivo study on a colon tumor model. Iran J Basic Med Sci 15, 759–767.PubMedPubMedCentralGoogle Scholar
  67. Shi, J., Chen, Z., Wang, B., Wang, L., Lu, T., and Zhang, Z. (2015). Reactive oxygen species-manipulated drug release from a smart envelope- type mesoporous titanium nanovehicle for tumor sonodynamicchemotherapy. ACS Appl Mater Interfaces 7, 28554–28565.PubMedCrossRefGoogle Scholar
  68. Shi, W.T., Forsberg, F., Vaidyanathan, P., Tornes, A., Østensen, J., and Goldberg, B.B. (2006). The influence of acoustic transmit parameters on the destruction of contrast microbubbles in vitro. Phys Med Biol 51, 4031–4045.PubMedCrossRefGoogle Scholar
  69. Shibaguchi, H., Tsuru, H., Kuroki, M., and Kuroki, M. (2011). Sonodynamic cancer therapy: a non-invasive and repeatable approach using low-intensity ultrasound with a sonosensitizer. Anticancer Res 31, 24-25–2429.Google Scholar
  70. Shimizu, N., Ogino, C., Dadjour, M.F., and Murata, T. (2007). Sonocatalytic degradation of methylene blue with TiO2 pellets in water. Ultrasons Sonochem 14, 184–190.CrossRefGoogle Scholar
  71. Siegel, R.L., Miller, K.D., and Jemal, A. (2017). Cancer statistics, 2017. CA Cancer J Clin 67, 7–30.PubMedCrossRefGoogle Scholar
  72. Sirsi, S.R., and Borden, M.A. (2014). State-of-the-art materials for ultrasound- triggered drug delivery. Adv Drug Deliver Rev 72, 3–14.CrossRefGoogle Scholar
  73. Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., and Xia, Y. (2014). Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53, 12320–12364.Google Scholar
  74. Sundaram, J., Mellein, B.R., and Mitragotri, S. (2003). An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J 84, 3087–3101.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Suslick, K.S., (1988). Ultrasound: Its Chemical, Physical, and Biological Effects. (New York: VCH Publishers).Google Scholar
  76. Sviridov, A.P., Andreev, V.G., Ivanova, E.M., Osminkina, L.A., Tamarov, K.P., and Timoshenko, V.Y. (2013). Porous silicon nanoparticles as sensitizers for ultrasonic hyperthermia. Appl Phys Lett 103, 193110.CrossRefGoogle Scholar
  77. Sviridov, A.P., Osminkina, L.A., Kharin, A.Y., Gongansky, M.B., Kargina, J.V., Kudryavtsev, A.A., Bezsudnova, Y.I., Perova, T.S., Geloen, A., Lysenko, V., et al. (2017). Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications. Nanotechnology 28, 105102.PubMedCrossRefGoogle Scholar
  78. Tabuchi, Y., Takasaki, I., Zhao, Q.L., Wada, S., Hori, T., Feril Jr., L.B., Tachibana, K., Nomura, T., and Kondo, T. (2008). Genetic networks responsive to low-intensity pulsed ultrasound in human lymphoma U- 937 cells. Cancer Lett 270, 286–294.PubMedCrossRefGoogle Scholar
  79. Tachibana, K., Feril Jr., L.B., and Ikeda-Dantsuji, Y. (2008). Sonodynamic therapy. Ultrasonics 48, 253–259.PubMedCrossRefGoogle Scholar
  80. Tang, W., Liu, Q., Zhang, J., Cao, B., Zhao, P., and Qin, X. (2010). In vitro activation of mitochondria-caspase signaling pathway in sonodynamic therapy-induced apoptosis in sarcoma 180 cells. Ultrasonics 50, 567–576.PubMedCrossRefGoogle Scholar
  81. Tinkov, S., Coester, C., Serba, S., Geis, N.A., Katus, H.A., Winter, G., and Bekeredjian, R. (2010). New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in-vivo characterization. J Control Release 148, 368–372.PubMedCrossRefGoogle Scholar
  82. Trepat, X., Deng, L., An, S.S., Navajas, D., Tschumperlin, D.J., Gerthoffer, W.T., Butler, J.P., and Fredberg, J.J. (2007). Universal physical responses to stretch in the living cell. Nature 447, 592–595.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Umemura, S., Kawabata, K., Yumita, N., Nishigaki, R., and Umemura, K. (1992). Sonodynamic approach to tumor treatment. In: Proceedings of Ultrasonics Symposium, S., Umemura, K., Kawabata, and N., Yumita, eds. (Arizona, USA), pp. 1231–1240.Google Scholar
  84. Umemura, S.I., Yumita, N., Nishigaki, R., and Umemura, K. (1990). Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Cancer Sci 81, 962–966.Google Scholar
  85. Umemura, S.I., Yumita, N., and Nishigaki, R. (1993). Enhancement of ultrasonically induced cell damage by a gallium-porphyrin complex, ATX-70. Cancer Sci 84, 582–588.Google Scholar
  86. Vargas, A., Pegaz, B., Debefve, E., Konan-Kouakou, Y., Lange, N., Ballini, J.P., van den Bergh, H., Gurny, R., and Delie, F. (2004). Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos. Int J Pharm 286, 131–145.PubMedCrossRefGoogle Scholar
  87. Wang, H., Yang, Y., Chen, H., Dan, J., Cheng, J., Guo, S., Sun, X., Wang, W., Ai, Y., Li, S., et al. (2014). The predominant pathway of apoptosis in THP-1 macrophage-derived foam cells induced by 5-aminolevulinic acid-mediated sonodynamic therapy is the mitochondria-caspase pathway despite the participation of endoplasmic reticulum stress. Cell P-hysiol Biochem 33, 1789–1801.CrossRefGoogle Scholar
  88. Wang, X.B., Liu, Q.H., Wang, P., Zhang, K., Tang, W., and Wang, B.L. (2008). Enhancement of apoptosis by sonodynamic therapy with protoporphyrin IX in isolate sarcoma 180 cells. Cancer Biother Radiopharmaceut 23, 238–246.CrossRefGoogle Scholar
  89. Wang, X., Zhang, W., Xu, Z., Luo, Y., Mitchell, D., and Moss, R.W. (2009). Sonodynamic and photodynamic therapy in advanced breast carcinoma: a report of 3 cases. Integr Cancer Ther 8, 283–287.PubMedCrossRefGoogle Scholar
  90. Wang, X., Wang, W., Yu, L., Tang, Y., Cao, J., and Chen, Y. (2017). Sitespecific sonocatalytic tumor suppression by chemically engineered single- crystalline mesoporous titanium dioxide sonosensitizers. J Mater Chem B 5, 4579–4586.CrossRefGoogle Scholar
  91. Wood, A.K.W., Bunte, R.M., Price, H.E., Deitz, M.S., Tsai, J.H., Lee, W.M. F., and Sehgal, C.M. (2008). The disruption of murine tumor neovasculature by low-intensity ultrasound-comparison between 1- and 3-MHz sonication frequencies. Academic Rad 15, 1133–1141.CrossRefGoogle Scholar
  92. Worthington, A., Thompson, J., Rauth, A., and Hunt, J. (1997). Mechanism of ultrasound enhanced porphyrin cytotoxicity. Part I: a search for free radical effects. Ultrasound Med Biol 23, 1095–1105.PubMedCrossRefGoogle Scholar
  93. Wu, J., and Nyborg, W.L. (2008). Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliver Rev 60, 1103–1116.CrossRefGoogle Scholar
  94. Xu, H., Zhang, X., Han, R., Yang, P., Ma, H., Song, Y., Lu, Z., Yin, W., Wu, X.X., and Wang, H. (2016). Nanoparticles in sonodynamic therapy: state of the art review. RSC Adv 6, 50697–50705.CrossRefGoogle Scholar
  95. Xu, Z.Y., Wang, K., Li, X.Q., Chen, S., Deng, J.M., Cheng, Y., and Wang, Z.G. (2013). The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells. Ultrasonics 53, 232–238.PubMedCrossRefGoogle Scholar
  96. Yamaguchi, S., Kobayashi, H., Narita, T., Kanehira, K., Sonezaki, S., Kudo, N., Kubota, Y., Terasaka, S., and Houkin, K. (2011). Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy. Ultrasons Sonochem 18, 1197–1204.CrossRefGoogle Scholar
  97. Yamamoto, S., Yuba, E., Harada, A., and Kono, K. (2015). Effective condensation of multivalent anions into polyion complex micelles prepared from TiO2 nanoparticles and polyallylamine bearing poly(ethylene glycol) grafts. Langmuir 31, 8583–8588.PubMedCrossRefGoogle Scholar
  98. Yu, T., Wang, Z., and Jiang, S. (2001). Potentiation of cytotoxicity of adriamycin on human ovarian carcinoma cell line 3AO by low-level ultrasound. Ultrasonics 39, 307–309.PubMedCrossRefGoogle Scholar
  99. Yu, T., Wang, Z., and Mason, T.J. (2004). A review of research into the uses of low level ultrasound in cancer therapy. Ultrasons Sonochem 11, 95–103.CrossRefGoogle Scholar
  100. Yumita, N., Nishigaki, R., Umemura, K., and Umemura, S.I. (1989). Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Cancer Sci 80, 219–222.Google Scholar
  101. Yumita, N., Nishigaki, R., Umemura, K., and Umemura, S.I. (1990). Synergistic effect of ultrasound and hematoporphyrin on sarcoma 180. Cancer Sci 81, 304–308.Google Scholar
  102. Yumita, N., Iwase, Y., Nishi, K., Ikeda, T., Umemura, S.I., Sakata, I., and Momose, Y. (2010a). Sonodynamically induced cell damage and membrane lipid peroxidation by novel porphyrin derivative, DCPH-P-Na (I). Anticancer Res 30, 2241–2246.PubMedGoogle Scholar
  103. Yumita, N., Okudaira, K., Momose, Y., and Umemura, S.I. (2010b). Sonodynamically induced apoptosis and active oxygen generation by gallium- porphyrin complex, ATX-70. Cancer Chemother Pharmacol 66, 1071–1078.PubMedCrossRefGoogle Scholar
  104. Zeghimi, A., Escoffre, J.M., and Bouakaz, A. (2015). Role of endocytosis in sonoporation-mediated membrane permeabilization and uptake of small molecules: an electron microscopy study. Phys Biol 12, 066007.PubMedCrossRefGoogle Scholar
  105. Zhang, J., Liang, Y.C., Lin, X., Zhu, X., Yan, L., Li, S., Yang, X., Zhu, G., Rogach, A.L., Yu, P.K.N., et al. (2015). Self-monitoring and self-delivery of photosensitizer-doped nanoparticles for highly effective combination cancer therapy in vitro and in vivo. ACS Nano 9, 9741–9756.PubMedCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xueting Pan
    • 1
  • Hongyu Wang
    • 1
  • Shunhao Wang
    • 1
  • Xiao Sun
    • 1
  • Lingjuan Wang
    • 1
  • Weiwei Wang
    • 1
  • Heyun Shen
    • 1
  • Huiyu Liu
    • 1
  1. 1.Beijing Key Laboratory of Bioprocess, Bionanomaterials & Translational Engineering Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations