Role of AMPK in atherosclerosis via autophagy regulation

  • Hanxiao Ou
  • Chuhao Liu
  • Wenjie Feng
  • Xinwen Xiao
  • Shengsong Tang
  • Zhongcheng Mo


Atherosclerosis is characterized by the accumulation of lipids and deposition of fibrous elements in the vascular wall, which is the primary cause of cardiovascular diseases. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor of energy metabolism that regulates multiple physiological processes, including lipid and glucose metabolism and the normalization of energy imbalances. Overwhelming evidence indicates that AMPK activation markedly attenuates atherosclerosis development. Autophagy inhibits cell apoptosis and inflammation and promotes cholesterol efflux and efferocytosis. Physiological autophagy is essential for maintaining normal cardiovascular function. Increasing evidence demonstrates that autophagy occurs in developing atherosclerotic plaques. Emerging evidence indicates that AMPK regulates autophagy via a downstream signaling pathway. The complex relationship between AMPK and autophagy has attracted the attention of many researchers because of this close relationship to atherosclerosis development. This review demonstrates the role of AMPK and autophagy in atherosclerosis. An improved understanding of this interrelationship will create novel preventive and therapeutic strategies for atherosclerosis.


adenosine monophosphate-activated protein kinase autophagy lipid metabolism atherosclerosis-associated cell atherosclerosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (81670401), the Natural Sciences Foundation of Hunan Province (2016JJ6133), the Scientific Research Innovation Program of Post-graduate in Hunan Province (CX2017B554), Zhengxiang Scholar (Xiangyang Tang) Program of the University of South China and The Construct Program of the Key Discipline in Hunan Province (Basic Medicine Sciences in University of South China).


  1. Abada, A., and Elazar, Z. (2014). Getting ready for building: signaling and autophagosome biogenesis. EMBO Rep 15, 839–852.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alers, S., Löffler, A.S., Wesselborg, S., and Stork, B. (2012). Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32, 2–11.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Almabrouk, T.A.M., Ewart, M.A., Salt, I.P., and Kennedy, S. (2014). Perivascular fat, AMP-activated protein kinase and vascular diseases. Br J Pharmacol 171, 595–617.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beg, Z.H., Allmann, D.W., and Gibson, D.M. (1973). Modulation of 3- hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and with protein fractions of rat liver cytosol. Biochem Biophys Res Commun 54, 1362–1369.CrossRefPubMedGoogle Scholar
  5. Boya, P., Reggiori, F., and Codogno, P. (2013). Emerging regulation and functions of autophagy. Nat Cell Biol 15, 713–720.CrossRefPubMedGoogle Scholar
  6. Brito, P.M., Devillard, R., Nègre-Salvayre, A., Almeida, L.M., Dinis, T.C. P., Salvayre, R., and Augé, N. (2009). Resveratrol inhibits the mTOR mitogenic signaling evoked by oxidized LDL in smooth muscle cells. Atherosclerosis 205, 126–134.CrossRefPubMedGoogle Scholar
  7. Carlson, C.A., and Kim, K.H. (1973). Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem 248, 378–380.PubMedGoogle Scholar
  8. Chen, M.L., Yi, L., Jin, X., Liang, X.Y., Zhou, Y., Zhang, T., Xie, Q., Zhou, X., Chang, H., Fu, Y.J., et al. (2013). Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy 9, 2033–2045.CrossRefPubMedGoogle Scholar
  9. Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., Gagne, G., Iyengar, R., et al. (2006). Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3, 403–416.CrossRefPubMedGoogle Scholar
  10. Dai, X.Y., Zhao, M.M., Cai, Y., Guan, Q.C., Zhao, Y., Guan, Y., Kong, W., Zhu, W.G., Xu, M.J., and Wang, X. (2013). Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release. Kidney Int 83, 1042–1051.CrossRefPubMedGoogle Scholar
  11. De Meyer, G.R.Y., Grootaert, M.O.J., Michiels, C.F., Kurdi, A., Schrijvers, D.M., and Martinet, W. (2015). Autophagy in vascular disease. Circul Res 116, 468–479.CrossRefGoogle Scholar
  12. Dong, Y., Zhang, M., Liang, B., Xie, Z., Zhao, Z., Asfa, S., Choi, H.C., and Zou, M.H. (2010a). Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation 121, 792–803.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dong, Y., Zhang, M., Wang, S., Liang, B., Zhao, Z., Liu, C., Wu, M., Choi, H.C., Lyons, T.J., and Zou, M.H. (2010b). Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo. Diabetes 59, 1386–1396.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Düfer, M., Noack, K., Krippeit-Drews, P., and Drews, G. (2010). Activation of the AMP-activated protein kinase enhances glucose-stimulated insulin secretion in mouse β-cells. Islets 2, 156–163.CrossRefPubMedGoogle Scholar
  15. Fan, X., Wang, J., Hou, J., Lin, C., Bensoussan, A., Chang, D., Liu, J., and Wang, B. (2015). Berberine alleviates ox-LDL induced inflammatory factors by up-regulation of autophagy via AMPK/mTOR signaling pathway. J Transl Med 13, 92.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fleming, A., Noda, T., Yoshimori, T., and Rubinsztein, D.C. (2011). Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7, 9–17.CrossRefPubMedGoogle Scholar
  17. Galic, S., Fullerton, M.D., Schertzer, J.D., Sikkema, S., Marcinko, K., Walkley, C.R., Izon, D., Honeyman, J., Chen, Z.P., van Denderen, B.J., et al. (2011). Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest 121, 4903–4915.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ghislat, G., Patron, M., Rizzuto, R., and Knecht, E. (2012). Withdrawal of essential amino acids increases autophagy by a pathway involving Ca2+/ calmodulin-dependent kinase kinase-β (CaMKK-β). J Biol Chem 287, 38625–38636.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Grootaert, M.O., da Costa Martins, P.A., Bitsch, N., Pintelon, I., De Meyer, G.R., Martinet, W., and Schrijvers, D.M. (2015). Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy 11, 2014–2032.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guo, P., Lian, Z., Sheng, L., Wu, C., Gao, J., Li, J., Wang, Y., Guo, Y., and Zhu, H. (2012). The adenosine derivative 2',3',5'-tri-O-acetyl-N6-(3- hydroxylaniline) adenosine activates AMPK and regulates lipid metabolism in vitro and in vivo. Life Sci 90, 1–7.CrossRefPubMedGoogle Scholar
  21. Habets, D.D.J., Coumans, W.A., El Hasnaoui, M., Zarrinpashneh, E., Bertrand, L., Viollet, B., Kiens, B., Jensen, T.E., Richter, E.A., Bonen, A., et al. (2009). Crucial role for LKB1 to AMPKa2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochim Biophys Acta 1791, 212–219.CrossRefPubMedGoogle Scholar
  22. Han, J., Pan, X.Y., Xu, Y., Xiao, Y., An, Y., Tie, L., Pan, Y., and Li, X.J. (2012). Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 8, 812–825.CrossRefPubMedGoogle Scholar
  23. Hardie, D.G., and Pan, D.A. (2002). Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochm Soc Trans 30, 1064–1070.CrossRefGoogle Scholar
  24. He, J., Zhang, G., Pang, Q., Yu, C., Xiong, J., Zhu, J., and Chen, F. (2017). SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition. FEBS J 284, 1324–1337.CrossRefPubMedGoogle Scholar
  25. Horman, S., Beauloye, C., Vertommen, D., Vanoverschelde, J.L., Hue, L., and Rider, M.H. (2003). Myocardial ischemia and increased heart work modulate the phosphorylation state of eukaryotic elongation factor-2. J Biol Chem 278, 41970–41976.CrossRefPubMedGoogle Scholar
  26. Huang, L.Z., Fan, B.Y., Ma, A., Shaul, P.W., and Zhu, H.B. (2015). Inhibition of ABCA1 protein degradation promotes HDL cholesterol efflux capacity and RCT and reduces atherosclerosis in mice. J Lipid Res 56, 986–997.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ishii, N., Matsumura, T., Kinoshita, H., Motoshima, H., Kojima, K., Tsutsumi, A., Kawasaki, S., Yano, M., Senokuchi, T., Asano, T., et al. (2009). Activation of AMP-activated protein kinase suppresses oxidized low-density lipoprotein-induced macrophage proliferation. J Biol Chem 284, 34561–34569.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jeong, H.W., Hsu, K.C., Lee, J.W., Ham, M., Huh, J.Y., Shin, H.J., Kim, W. S., and Kim, J.B. (2009). Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am J Physiol Endocrinol Metab 296, E955–E964.CrossRefPubMedGoogle Scholar
  29. Kahn, B.B., Alquier, T., Carling, D., and Hardie, D.G. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1, 15–25.CrossRefPubMedGoogle Scholar
  30. Kim, H.S., Montana, V., Jang, H.J., Parpura, V., and Kim, J. (2013). Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells. J Biol Chem 288, 22693–22705.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kimura, T., Tomura, H., Sato, K., Ito, M., Matsuoka, I., Im, D.S., Kuwabara, A., Mogi, C., Itoh, H., Kurose, H., et al. (2010). Mechanism and Role of high density lipoprotein-induced activation of AMP-activated protein kinase in endothelial cells. J Biol Chem 285, 4387–4397.CrossRefPubMedGoogle Scholar
  32. Krishan, S., Richardson, D.R., and Sahni, S. (2015). Adenosine monophosphate- activated kinase and its key role in catabolism: structure, regulation, biological activity, and pharmacological activation. Mol Pharmacol 87, 363–377.CrossRefPubMedGoogle Scholar
  33. LaRocca, T.J., Henson, G.D., Thorburn, A., Sindler, A.L., Pierce, G.L., and Seals, D.R. (2012). Translational evidence that impaired autophagy contributes to arterial ageing. J Physiol 590, 3305–3316.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Le Guezennec, X., Brichkina, A., Huang, Y.F., Kostromina, E., Han, W., and Bulavin, D.V. (2012). Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab 16, 68–80.CrossRefPubMedGoogle Scholar
  35. Li, D., Zhang, Y., Ma, J., Ling, W., and Xia, M. (2010). Adenosine monophosphate activated protein kinase regulates ABCG1-mediated oxysterol efflux from endothelial cells and protects against hypercholesterolemia-induced endothelial dysfunction. Arterioscler Thromb Vasc Biol 30, 1354–1362.CrossRefPubMedGoogle Scholar
  36. Li, J., Wang, Y., Wang, Y., Wen, X., Ma, X.N., Chen, W., Huang, F., Kou, J., Qi, L.W., Liu, B., et al. (2015). Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J Mol Cell Cardiol 86, 62–74.CrossRefPubMedGoogle Scholar
  37. Li, R., Ji, Z., Qin, H., Kang, X., Sun, B., Wang, M., Chang, C.H., Wang, X., Zhang, H., Zou, H., et al. (2014). Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1β producing inflammasome. ACS Nano 8, 10280–10292.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liao, X., Sluimer, J.C., Wang, Y., Subramanian, M., Brown, K., Pattison, J. S., Robbins, J., Martinez, J., and Tabas, I. (2012). Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 15, 545–553.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Maiuri, M.C., Grassia, G., Platt, A.M., Carnuccio, R., Ialenti, A., and Maffia, P. (2013). Macrophage autophagy in atherosclerosis. Mediators Inflamm 2013, 1–14.CrossRefGoogle Scholar
  40. Martinet, W., De Loof, H., and De Meyer, G.R.Y. (2014). mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis 233, 601–607.CrossRefPubMedGoogle Scholar
  41. Michiels, C.F., Fransen, P., De Munck, D.G., De Meyer, G.R.Y., and Martinet, W. (2015). Defective autophagy in vascular smooth muscle cells alters contractility and Ca2+ homeostasis in mice. Am J Physiol Heart Circul Physiol 308, H557–H567.CrossRefGoogle Scholar
  42. Motobayashi, Y., Izawa-Ishizawa, Y., Ishizawa, K., Orino, S., Yamaguchi, K., Kawazoe, K., Hamano, S., Tsuchiya, K., Tomita, S., and Tamaki, T. (2009). Adiponectin inhibits insulin-like growth factor-1-induced cell migration by the suppression of extracellular signal-regulated kinase 1/2 activation, but not Akt in vascular smooth muscle cells. Hypertens Res 32, 188–193.CrossRefPubMedGoogle Scholar
  43. Muller, C., Salvayre, R., Nègre-Salvayre, A., and Vindis, C. (2011). Oxidized LDLs trigger endoplasmic reticulum stress and autophagy: prevention by HDLs. Autophagy 7, 541–543.CrossRefPubMedGoogle Scholar
  44. Noh, B.K., Lee, J.K., Jun, H., Lee, J.H., Jia, Y., Hoang, M.H., Kim, J.W., Park, K.H., and Lee, S.J. (2011). Restoration of autophagy by puerarin in ethanol-treated hepatocytes via the activation of AMP-activated protein kinase. Biochem Biophys Res Commun 414, 361–366.CrossRefPubMedGoogle Scholar
  45. Novikova, D.S., Garabadzhiu, A.V., Melino, G., Barlev, N.A., and Tribulovich, V.G. (2015). AMP-activated protein kinase: structure, function, and role in pathological processes. Biochem Moscow 80, 127–144.CrossRefGoogle Scholar
  46. Nussenzweig, S.C., Verma, S., and Finkel, T. (2015). The role of autophagy in vascular biology. Circul Res 116, 480–488.CrossRefGoogle Scholar
  47. Okayasu, T., Tomizawa, A., Suzuki, K., Manaka, K., and Hattori, Y. (2008). PPARa activators upregulate eNOS activity and inhibit cytokine-induced NF-?B activation through AMP-activated protein kinase activation. Life Sci 82, 884–891.CrossRefPubMedGoogle Scholar
  48. Ou, H., Huang, Z., Mo, Z., and Xiao, J. (2017). The characteristics and roles of advanced oxidation protein products in atherosclerosis. Cardiovasc Toxicol 17, 1–12.CrossRefPubMedGoogle Scholar
  49. Ouimet, M., Franklin, V., Mak, E., Liao, X., Tabas, I., and Marcel, Y.L. (2011). Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13, 655–667.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Petrovski, G., Ayna, G., Májai, G., Hodrea, J., Benko, S., Mádi, A., and Fésüs, L. (2011). Phagocytosis of cells dying through autophagy induces inflammasome activation and IL-1β release in human macrophages. Autophagy 7, 321–330.CrossRefPubMedGoogle Scholar
  51. Razani, B., Feng, C., Coleman, T., Emanuel, R., Wen, H., Hwang, S., Ting, J.P., Virgin, H.W., Kastan, M.B., and Semenkovich, C.F. (2012). Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 15, 534–544.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Salabei, J.K., Balakumaran, A., Frey, J.C., Boor, P.J., Treinen-Moslen, M., and Conklin, D.J. (2012). Verapamil stereoisomers induce antiproliferative effects in vascular smooth muscle cells via autophagy. Toxicol Appl Pharmacol 262, 265–272.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Salabei, J.K., Cummins, T.D., Singh, M., Jones, S.P., Bhatnagar, A., and Hill, B.G. (2013). PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochem J 451, 375–388.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sanders, M.J., Grondin, P.O., Hegarty, B.D., Snowden, M.A., and Carling, D. (2007). Investigating the mechanism for AMP activation of the AMP- activated protein kinase cascade. Biochem J 403, 139–148.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sathyanarayan, A., Mashek, M.T., and Mashek, D.G. (2017). ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep 19, 1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Shan, H., Guo, D., Li, X., Zhao, X., Li, W., and Bai, X. (2014). From autophagy to senescence and apoptosis in Angiotensin II-treated vascular endothelial cells. APMIS 122, 985–992.CrossRefPubMedGoogle Scholar
  57. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131–1135.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Steinberg, G.R., and Kemp, B.E. (2009). AMPK in health and disease. Physiol Rev 89, 1025–1078.CrossRefPubMedGoogle Scholar
  59. Sun, W., Lee, T.S., Zhu, M., Gu, C., Wang, Y., Zhu, Y., and Shyy, J.Y.J. (2006). Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation 114, 2655–2662.CrossRefPubMedGoogle Scholar
  60. Tai, S., Hu, X.Q., Peng, D.Q., Zhou, S.H., and Zheng, X.L. (2016). The roles of autophagy in vascular smooth muscle cells. Int J Cardiol 211, 1–6.CrossRefPubMedGoogle Scholar
  61. Takeda-Watanabe, A., Kitada, M., Kanasaki, K., and Koya, D. (2012). SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochem Biophys Res Commun 427, 191–196.CrossRefPubMedGoogle Scholar
  62. Urbanek, T., Kuczmik, W., Basta-Kaim, A., and Gabryel, B. (2014). RETRACTED: rapamycin induces of protective autophagy in vascular endothelial cells exposed to oxygen-glucose deprivation. Brain Res 1553, 1–11.CrossRefPubMedGoogle Scholar
  63. Vasamsetti, S.B., Karnewar, S., Kanugula, A.K., Thatipalli, A.R., Kumar, J. M., and Kotamraju, S. (2015). Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes 64, 2028–2041.CrossRefPubMedGoogle Scholar
  64. Vindis, C. (2015). Autophagy: an emerging therapeutic target in vascular diseases. Br J Pharmacol 172, 2167–2178.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wang, B., Zhong, Y., Huang, D., and Li, J. (2016). Macrophage autophagy regulated by miR-384-5p-mediated control of Beclin-1 plays a role in the development of atherosclerosis. Am J Transl Res 8, 606–614.PubMedPubMedCentralGoogle Scholar
  66. Wang, N., Silver, D.L., Costet, P., and Tall, A.R. (2000). Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem 275, 33053–33058.CrossRefPubMedGoogle Scholar
  67. Wang, Q., Zhang, M., Torres, G., Wu, S., Ouyang, C., Xie, Z., and Zou, M. H. (2017). Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of Drp1-mediated mitochondrial fission. Diabetes 66, 193–205.CrossRefPubMedGoogle Scholar
  68. Weikel, K.A., Cacicedo, J.M., Ruderman, N.B., and Ido, Y. (2015). Glucose and palmitate uncouple AMPK from autophagy in human aortic endothelial cells. Am J Physiol Cell Physiol 308, C249–C263.CrossRefPubMedGoogle Scholar
  69. Zhai, C., Cheng, J., Mujahid, H., Wang, H., Kong, J., Yin, Y., Li, J., Zhang, Y., Ji, X., and Chen, W. (2014). Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque. PLoS ONE 9, e90563.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhang, L., Cui, L.Q., Zhou, G.Z., Jing, H.J., Guo, Y.Q., and Sun, W.K. (2013). Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J Nutr Biochem 24, 903–911.CrossRefPubMedGoogle Scholar
  71. Zhang, M., Zhu, H., Ding, Y., Liu, Z., Cai, Z., and Zou, M.H. (2017). AMPactivated protein kinase a1 promotes atherogenesis by increasing monocyte- to-macrophage differentiation. J Biol Chem 292, 7888–7903.CrossRefPubMedGoogle Scholar
  72. Zhang, Y.L., Cao, Y.J., Zhang, X., Liu, H.H., Tong, T., Xiao, G.D., Yang, Y. P., and Liu, C.F. (2010). The autophagy-lysosome pathway: a novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells. Biochem Biophys Res Commun 394, 377–382.CrossRefPubMedGoogle Scholar
  73. Zou, M.H., Kirkpatrick, S.S., Davis, B.J., Nelson, J.S., Wiles, W.T., Schlattner, U., Neumann, D., Brownlee, M., Freeman, M.B., and Goldman, M.H. (2004). Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem 279, 43940–43951.PubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clinical Anatomy & Reproductive Medicine Application Institute, Institute of Pharmacy and PharmacologyUniversity of South ChinaHengyangChina
  2. 2.Center for Life ScienceHunan University of MedicineHuaihuaChina
  3. 3.2016 Grade Excellent Doctor Class of Medical SchoolUniversity of South ChinaHengyangChina
  4. 4.2015 Grade Medical Imaging Class of Medical SchoolUniversity of South ChinaHengyangChina

Personalised recommendations