Skip to main content
Log in

Microbiome analysis and -omics studies of microbial denitrification processes in wastewater treatment: recent advances

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Nitrogen pollution is an increasingly severe worldwide problem because of drainage of nitrogen-containing wastewater and intensive application of nitrogen-containing fertilizers. Denitrification, a key process in nitrogen cycles, is commonly employed for nitrogen removal in engineered wastewater treatment systems. Biological denitrification is performed by denitrifying microbes (bacteria) that use nitrate as terminal electron acceptor. Better understanding the functions of diverse microbial populations in denitrification-based wastewater treatment systems, and the interactions of these populations with operating environments, is essential for improving both treatment performance and system stability. Recent advances in “meta-omics” (e. g., genomics, transcriptomics, proteomics, metabolomics), other molecular biology tools, and microbiome analysis have greatly enhanced such understanding. This minireview summarizes recent findings regarding microbial community structure and composition, key functional microbes and their physiology, functional genes involved in nitrogen cycle, and responses of microbes and their genes to changes of environmental factors or operating parameters, in denitrification processes in wastewater treatment systems. Of particular interest are heterotrophic denitrification systems (which require alternative organic carbon sources) and the autotrophic denitrification systems (which do not require an external carbon source). Integrated microbiome and -omics approaches have great future potential for determination of optimal environmental and biotechnological parameters, novel process development, and improvement of nitrogen removal efficiency and system stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Alhail, S., and Lu, X.W. (2014). Experimental investigation and modeling of innovative five-tank anaerobic-anoxic/oxic process. Appl Math Model 38, 278–290.

    Article  Google Scholar 

  • Allende, K.L., McCarthy, D.T., and Fletcher, T.D. (2014). The influence of media type on removal of arsenic, iron and boron from acidic wastewater in horizontal flow wetland microcosms planted with Phragmites australis. Chem Eng J 246, 217–228.

    Article  CAS  Google Scholar 

  • Ashok, V., and Hait, S. (2015). Remediation of nitrate-contaminated water by solid-phase denitrification process—a review. Environ Sci Pollut Res 22, 8075–8093.

    Article  CAS  Google Scholar 

  • Baek, G., Cheon, S.P., Kim, S., Kim, Y., Kim, H., Kim, C., and Kim, S. (2012). Modular neural networks prediction model based A2/O process control system. Int J Precis Eng Manuf 13, 905–913.

    Article  Google Scholar 

  • Baumann, B., Snozzi, M., Zehnder, A.J., and Van Der Meer, J.R. (1996). Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J Bacteriol 178, 4367–4374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowen, J.L., Byrnes, J.E.K., Weisman, D., and Colaneri, C. (2013). Functional gene pyrosequencing and network analysis: an approach to examine the response of denitrifying bacteria to increased nitrogen supply in salt marsh sediments. Front Microbiol 4, 342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho, G., Lemos, P.C., Oehmen, A., and Reis, M.A.M. (2007). Denitrifying phosphorus removal: linking the process performance with the microbial community structure. Water Res 41, 4383–4396.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Lan, S., Wang, L., Dong, S., Zhou, H., Tan, Z., and Li, X. (2017). A review: driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems. Chemosphere 174, 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Zhao, Z., Peng, Y., Li, J., Xiao, L., and Yang, L. (2016). Performance of a full-scale modified anaerobic/anoxic/oxic process: highthroughput sequence analysis of its microbial structures and their community functions. Bioresource Tech 220, 225–232.

    Article  CAS  Google Scholar 

  • Cherchi, C., Onnis-Hayden, A., El-Shawabkeh, I., and Gu, A.Z. (2009). Implication of using different carbon sources for denitrification in wastewater treatments. Water Environ Res 81, 788–799.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, D., Meyer, Q., Stafford, W., Muyanga, S., Cameron, R., and Wittwer, P. (2005). Metagenomic gene discovery: past, present and future. Trends Biotech 23, 321–329.

    Article  CAS  Google Scholar 

  • Davies, K.J., Lloyd, D., and Boddy, L. (1989). The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. J Gen Microbiol 135, 2445–2451.

    PubMed  CAS  Google Scholar 

  • Deng, S., Li, D., Yang, X., Xing, W., Li, J., and Zhang, Q. (2016). Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition. Bioresource Tech 219, 677–686.

    Article  CAS  Google Scholar 

  • Desloover, J., Vlaeminck, S.E., Clauwaert, P., Verstraete, W., and Boon, N. (2012). Strategies to mitigate N2O emissions from biological nitrogen removal systems. Curr Opin Biotech 23, 474–482.

    Article  PubMed  CAS  Google Scholar 

  • Doherty, L., Zhao, Y., Zhao, X., Hu, Y., Hao, X., Xu, L., and Liu, R. (2015). A review of a recently emerged technology: constructed wetland— Microbial fuel cells. Water Res 85, 38–45.

    Article  PubMed  CAS  Google Scholar 

  • Fahrbach, M., Kuever, J., Meinke, R., Kampfer, P., and Hollender, J. (2006). Denitratisoma oestradiolicum gen. nov., sp. nov., a 17beta-oestradiol-degrading, denitrifying beta proteobacterium. Int J Syst Evol Microbiol 56, 1547–1552.

    Article  PubMed  CAS  Google Scholar 

  • Fierer, N., Ladau, J., Clemente, J.C., Leff, J.W., Owens, S.M., Pollard, K. S., Knight, R., Gilbert, J.A., and McCulley, R.L. (2013). Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624.

    Article  PubMed  CAS  Google Scholar 

  • Flores, A. 3rd, Nisola, G.M., Cho, E., Gwon, E.M., Kim, H., Lee, C., Park, S., and Chung, W.J. (2007). Bioaugmented sulfur-oxidizing denitrification system with Alcaligenes defragrans B21 for high nitrate containing wastewater treatment. Bioprocess Biosyst Eng 30, 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Fu, G., Huangshen, L., Guo, Z., Zhou, Q., and Wu, Z. (2017). Effect of plant-based carbon sources on denitrifying microorganisms in a vertical flow constructed wetland. Bioresource Tech 224, 214–221.

    Article  CAS  Google Scholar 

  • Gamble, T.N., Betlach, M.R., and Tiedje, J.M. (1977). Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol 33, 926–939.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Geets, J., de Cooman, M., Wittebolle, L., Heylen, K., Vanparys, B., De Vos, P., Verstraete, W., and Boon, N. (2007). Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Appl Microbiol Biotechnol 75, 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Alvarez, V., Revetta, R.P., and Santo Domingo, J.W. (2012). Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiol 12, 122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gude, V.G. (2015). A new perspective on microbiome and resource management in wastewater systems. J Biotechnol Biomater in press doi: 10.4172/2155-952X.1000184.

    Google Scholar 

  • Gumaelius, L., Magnusson, G., Pettersson, B., and Dalhammar, G. (2001). Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 51, 999–1006.

    Article  PubMed  CAS  Google Scholar 

  • He, S., Kunin, V., Haynes, M., Martin, H.G., Ivanova, N., Rohwer, F., Hugenholtz, P., and McMahon, K.D. (2010). Metatranscriptomic array analysis of ‘Candidatus Accumulibacter phosphatis’-enriched enhanced biological phosphorus removal sludge. Environ Microbiol 12, 1205–1217.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez, D., and Rowe, J.J. (1988). Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration. J Biol Chem 263, 7937–7939.

    PubMed  CAS  Google Scholar 

  • Heylen, K., Vanparys, B., Wittebolle, L., Verstraete, W., Boon, N., and De Vos, P. (2006). Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ MicroBiol 72, 2637–2643.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu, M., Wang, X., Wen, X., and Xia, Y. (2012). Microbial community structures in different wastewater treatment plants as revealed by 454- pyrosequencing analysis. Bioresource Tech 117, 72–79.

    Article  CAS  Google Scholar 

  • Jia, W., Liang, S., Zhang, J., Ngo, H.H., Guo, W., Yan, Y., and Zou, Y. (2013). Nitrous oxide emission in low-oxygen simultaneous nitrification and denitrification process: sources and mechanisms. Bioresource Tech 136, 444–451.

    Article  CAS  Google Scholar 

  • Jiang, K., Sanseverino, J., Chauhan, A., Lucas, S., Copeland, A., Lapidus, A., Del Rio, T.G., Dalin, E., Tice, H., Bruce, D., Goodwin, L., Pitluck, S., Sims, D., Brettin, T., Detter, J.C., Han, C., Chang, Y.J., Larimer, F., Land, M., Hauser, L., Kyrpides, N.C., Mikhailova, N., Moser, S., Jegier, P., Close, D., Debruyn, J.M., Wang, Y., Layton, A.C., Allen, M.S., and Sayler, G.S. (2012). Complete genome sequence of Thauera aminoaromatica strain MZ1T. Stand Genomic Sci 6, 325–335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kampschreur, M.J., Temmink, H., Kleerebezem, R., Jetten, M.S.M., and van Loosdrecht, M.C.M. (2009). Nitrous oxide emission during wastewater treatment. Water Res 43, 4093–4103.

    Article  PubMed  CAS  Google Scholar 

  • Karanasios, K.A., Vasiliadou, I.A., Pavlou, S., and Vayenas, D.V. (2010). Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180, 20–37.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C.J., Fagerberg, B., Nielsen, J., and Bäckhed, F. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Khan, S.T., Horiba, Y., Yamamoto, M., and Hiraishi, A. (2002). Members of the family comamonadaceae as primary poly(3-hydroxybutyrate-co- 3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol 68, 3206–3214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khanitchaidecha, W., Shakya, M., Nakano, Y., Tanaka, Y., and Kazama, F. (2012). Development of an attached growth reactor for NH4-N removal at a drinking water supply system in Kathmandu Valley, Nepal. J Environ Sci Health Part A 47, 734–743.

    Article  CAS  Google Scholar 

  • Kim, B.C., Kim, S., Shin, T., Kim, H., and Sang, B.I. (2013a). Comparison of the bacterial communities in anaerobic, anoxic, and oxic chambers of a pilot A2O process using pyrosequencing analysis. Curr Microbiol 66, 555–565.

    Article  PubMed  CAS  Google Scholar 

  • Kim, I.S., Ekpeghere, K., Ha, S.Y., Kim, S.H., Kim, B.S., Song, B., Chun, J., Chang, J.S., Kim, H.G., and Koh, S.C. (2013b). An eco-friendly treatment of tannery wastewater using bioaugmentation with a novel microbial consortium. J Environ Sci Health Part A 48, 1732–1739.

    Article  CAS  Google Scholar 

  • Kim, I.S., Ekpeghere, K.I., Ha, S.Y., Kim, B.S., Song, B., Kim, J.T., Kim, H.G., and Koh, S.C. (2014). Full-scale biological treatment of tannery wastewater using the novel microbial consortium BM-S-1. J Environ Sci Health Part A 49, 355–364.

    Article  CAS  Google Scholar 

  • Knowles, R. (1982). Denitrification. Microbiol Rev 46, 43–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Knowles, R. (1996). Denitrification: microbiology and ecology. Life Support Biosph Sci 3, 31–34.

    PubMed  CAS  Google Scholar 

  • Korner, H., and Zumft, W.G. (1989). Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol 55, 1670–1676.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Y., Ai, G.M., Miao, L.L., and Liu, Z.P. (2016). Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission. Bioresource Tech 206, 9–15.

    Article  CAS  Google Scholar 

  • Lu, H., and Chandran, K. (2010). Diagnosis and quantification of glycerol assimilating denitrifying bacteria in an integrated fixed-film activated sludge reactor via13C DNA stable-isotope probing. Environ Sci Technol 44, 8943–8949.

    Article  PubMed  CAS  Google Scholar 

  • Lu, H., Chandran, K., and Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment. Water Res 64, 237–254.

    Article  PubMed  CAS  Google Scholar 

  • Martineau, C., Villeneuve, C., Mauffrey, F., and Villemur, R. (2013). Hyphomicrobium nitrativorans sp. nov., isolated from the biofilm of a methanol-fed denitrification system treating seawater at the Montreal Biodome. Int J Syst Evol Microbiol 63, 3777–3781.

    Article  PubMed  CAS  Google Scholar 

  • Massara, T.M., Malamis, S., Guisasola, A., Baeza, J.A., Noutsopoulos, C., and Katsou, E. (2017). A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci Total Environ 596–597, 106–123.

    Article  PubMed  CAS  Google Scholar 

  • Miao, J., Chi, L., Pan, L., and Song, Y. (2015). Generally detected genes in comparative transcriptomics in bivalves: toward the identification of molecular markers of cellular stress response. Environ Toxicol Pharmacol 39, 475–481.

    Article  PubMed  CAS  Google Scholar 

  • Modin, O., Fukushi, K., and Yamamoto, K. (2007). Denitrification with methane as external carbon source. Water Res 41, 2726–2738.

    Article  PubMed  CAS  Google Scholar 

  • Mohseni-Bandpi, A., Elliott, D.J., and Zazouli, M.A. (2013). Biological nitrate removal processes from drinking water supply-a review. J Environ Health Sci Eng 11, 35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mousavi, S., Ibrahim, S., and Aroua, M.K. (2012). Sequential nitrification and denitrification in a novel palm shell granular activated carbon twinchamber upflow bio-electrochemical reactor for treating ammoniumrich wastewater. Bioresource Tech 125, 256–266.

    Article  CAS  Google Scholar 

  • Neef, A., Zaglauer, A., Meier, H., Amann, R., Lemmer, H., and Schleifer, K.H. (1996). Population analysis in a denitrifying sand filter: conventional and in situ identification of Paracoccus spp. in methanol-fed biofilms. Appl Environ Microbiol 62, 4329–4339.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen, V.K., Hong, S., Park, Y., Jo, K., and Lee, T. (2015). Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes. J Biosci Bioeng 119, 180–187.

    Article  PubMed  CAS  Google Scholar 

  • Pan, Y., Ni, B.J., Bond, P.L., Ye, L., and Yuan, Z. (2013a). Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res 47, 3273–3281.

    Article  PubMed  CAS  Google Scholar 

  • Pan, Y., Ni, B.J., and Yuan, Z. (2013b). Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification. Environ Sci Technol 47, 11083–11091.

    Article  PubMed  CAS  Google Scholar 

  • Pan, Y., Ye, L., Ni, B.J., and Yuan, Z. (2012). Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Water Res 46, 4832–4840.

    Article  PubMed  CAS  Google Scholar 

  • Park, J.H., Choi, O., Lee, T.H., Kim, H., and Sang, B.I. (2016). Pyrosequencing analysis of microbial communities in hollow fiber-membrane biofilm reactors system for treating high-strength nitrogen wastewater. Chemosphere 163, 192–201.

    Article  PubMed  CAS  Google Scholar 

  • Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D.R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J.M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H.B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Doré, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Antolin, M., Artiguenave, F., Blottiere, H., Borruel, N., Bruls, T., Casellas, F., Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Forte, M., Friss, C., van de Guchte, M., Guedon, E., Haimet, F., Jamet, A., Juste, C., Kaci, G., Kleerebezem, M., Knol, J., Kristensen, M., Layec, S., Le Roux, K., Leclerc, M., Maguin, E., Melo Minardi, R., Oozeer, R., Rescigno, M., Sanchez, N., Tims, S., Torrejon, T., Varela, E., de Vos, W., Winogradsky, Y., Zoetendal, E., Bork, P., Ehrlich, S.D., and Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Remmas, N., Melidis, P., Katsioupi, E., and Ntougias, S. (2016). Effects of aerated and fed membrane bioreactor treating landfill leachate. Bioresource Tech 220, 557–565.

    Article  CAS  Google Scholar 

  • Roume, H., Heintz-Buschart, A., Muller, E.E.L., May, P., Satagopam, V.P., Laczny, C.C., Narayanasamy, S., Lebrun, L.A., Hoopmann, M.R., Schupp, J.M., Gillece, J.D., Hicks, N.D., Engelthaler, D.M., Sauter, T., Keim, P.S., Moritz, R.L., and Wilmes, P. (2015). Comparative integrated omics: identification of key functionalities in microbial community- wide metabolic networks. NPJ Biofilms Microbiomes 1, 15007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruan, Y.J., Deng, Y.L., Guo, X.S., Timmons, M.B., Lu, H.F., Han, Z.Y., Ye, Z.Y., Shi, M.M., and Zhu, S.M. (2016). Simultaneous ammonia and nitrate removal in an airlift reactor using poly(butylene succinate) as carbon source and biofilm carrier. Bioresource Tech 216, 1004–1013.

    Article  CAS  Google Scholar 

  • Scholten, E., Lukow, T., Auling, G., Kroppenstedt, R.M., Rainey, F.A., and Diekmann, H. (1999). Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol 49 Pt 3, 1045–1051.

    Article  Google Scholar 

  • Shao, M.F., Zhang, T., and Fang, H.H.P. (2010). Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 88, 1027–1042.

    Article  PubMed  CAS  Google Scholar 

  • Shao, M.F., Zhang, T., Fang, H.H., and Li, X. (2011). The effect of nitrate concentration on sulfide-driven autotrophic denitrification in marine sediment. Chemosphere 83, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., McCarren, J., and DeLong, E.F. (2012). Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment. Environ Microbiol 14, 191–206.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., Tyson, G.W., Eppley, J.M., and DeLong, E.F. (2011). Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J 5, 999–1013.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K.A., Mosier, A.R., Crutzen, P.J., and Winiwarter, W. (2012). The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth’s climate. Philos Trans R Soc B-Biol Sci 367, 1169–1174.

    Article  CAS  Google Scholar 

  • Smith, R.L., and Yoshinari, T. (2008). Occurrence and turnover of nitric oxide in a nitrogen-impacted sand and gravel aquifer. Environ Sci Technol 42, 8245–8251.

    Article  PubMed  CAS  Google Scholar 

  • Song, B., and Ward, B.B. (2003). Nitrite reductase genes in halobenzoate degrading denitrifying bacteria. FEMS Microbiol Ecol 43, 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Sul, W.J., Kim, I.S., Ekpeghere, K.I., Song, B., Kim, B.S., Kim, H.G., Kim, J.T., and Koh, S.C. (2016). Metagenomic insight of nitrogen metabolism in a tannery wastewater treatment plant bioaugmented with the microbial consortium BM-S-1. J Environ Sci Health Part A 51, 1164–1172.

    Article  CAS  Google Scholar 

  • Tallec, G., Garnier, J., Billen, G., and Gousailles, M. (2006). Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level. Water Res 40, 2972–2980.

    Article  PubMed  CAS  Google Scholar 

  • Tian, M., Zhao, F., Shen, X., Chu, K., Wang, J., Chen, S., Guo, Y., and Liu, H. (2015). The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing. J Environ Sci 35, 181–190.

    Article  Google Scholar 

  • Torres, M.J., Simon, J., Rowley, G., Bedmar, E.J., Richardson, D.J., Gates, A.J., and Delgado, M.J. (2016). Nitrous oxide metabolism in nitratereducing bacteria: physiology and regulatory mechanisms. Adv Microb Physiol 68, 353–432.

    Article  PubMed  CAS  Google Scholar 

  • Vymazal, J., and Kröpfelová, L. (2015). Multistage hybrid constructed wetland for enhanced removal of nitrogen. Ecol Eng 84, 202–208.

    Article  Google Scholar 

  • Wang, J., and Chu, L. (2016). Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotech Adv 34, 1103–1112.

    Article  CAS  Google Scholar 

  • Wang, J., Wang, Y., Bai, J., Liu, Z., Song, X., Yan, D., Abiyu, A., Zhao, Z., and Yan, D. (2017a). High efficiency of inorganic nitrogen removal by integrating biofilm-electrode with constructed wetland: autotrophic denitrifying bacteria analysis. Bioresource Tech 227, 7–14.

    Article  CAS  Google Scholar 

  • Wang, S., Pu, Y., and Wei, C. (2017b). COD and nitrogen removal and microbial communities in a novel waterfall biofilm reactor operated at different COD/TN ratios. J Environ Sci Health Part A 52, 99–105.

    Article  CAS  Google Scholar 

  • Wang, W., Cao, L., Tan, H., Zhang, R. (2016) Nitrogen removal from synthetic wastewater using single and mixed culture systems of denitrifying fungi, bacteria, and actinobacteria. Appl Microbiol Biotechnol 100, 9699–9707.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Hu, M., Xia, Y., Wen, X., and Ding, K. (2012). Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol 78, 7042–7047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Z., Zhang, X.X., Lu, X., Liu, B., Li, Y., Long, C., and Li, A. (2014). Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing. PLoS ONE 9, e113603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xing, W., Li, D., Li, J., Hu, Q., and Deng, S. (2016). Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification. Bioresource Tech 211, 240–247.

    Article  CAS  Google Scholar 

  • Xing, W., Li, J., Cong, Y., Gao, W., Jia, Z., and Li, D. (2017). Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing. Bioresource Tech 229, 134–142.

    Article  CAS  Google Scholar 

  • Ye, L., and Zhang, T. (2013). Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechnol 97, 2681–2690.

    Article  PubMed  CAS  Google Scholar 

  • Yu, K., and Zhang, T. (2012). Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS ONE 7, e38183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, J., Wang, Y., Yu, D., Tong, J., Chen, M., Sui, Q., ChuLu, B., and Wei, Y. (2017). Who contributes more to N2O emission during sludge bio-drying with two different aeration strategies, nitrifiers or denitrifiers? Appl Microbiol Biotechnol 101, 3393–3404.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Q.L., Liu, Y., Ai, G.M., Miao, L.L., Zheng, H.Y., and Liu, Z.P. (2012). The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresource Tech 108, 35–44.

    Article  CAS  Google Scholar 

  • Zheng, H.Y., Liu, Y., Gao, X.Y., Ai, G.M., Miao, L.L., and Liu, Z.P. (2012). Characterization of a marine origin aerobic nitrifying-denitrifying bacterium. J Biosci Bioeng 114, 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Zhi, W., and Ji, G. (2014). Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints. Water Res 64, 32–41.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Z., Song, X., Zhao, Y., Xiao, Y., Wang, Y., Wang, J., and Yan, D. (2017). Effects of iron and calcium carbonate on the variation and cycling of carbon source in integrated wastewater treatments. Bioresource Tech 225, 262–271.

    Article  CAS  Google Scholar 

  • Zumft, W.G. (1997). Cell biology and molecular basis of denitrification. Microbiology and molecular biology reviews. Microbiol Mol Biol Rev 61, 533–616.

    PubMed  CAS  Google Scholar 

  • Zumft, W.G., and Körner, H. (1997). Enzyme diversity and mosaic gene organization in denitrification. Antonie van Leeuwenhoek 71, 43–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. S. Anderson for English editing of the manuscript. This work was supported by the projects of National Key Research and Development Program of China (2016YFD0501409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, L., Liu, Z. Microbiome analysis and -omics studies of microbial denitrification processes in wastewater treatment: recent advances. Sci. China Life Sci. 61, 753–761 (2018). https://doi.org/10.1007/s11427-017-9228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9228-2

Keywords

Navigation