Skip to main content
Log in

Molecular assembly of recombinant chicken type II collagen in the yeast Pichia pastoris

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Effective treatment of rheumatoid arthritis can be mediated by native chicken type II collagen (nCCII), recombinant peptide containing nCCII tolerogenic epitopes (CTEs), or a therapeutic DNA vaccine encoding the full-length CCOL2A1 cDNA. As recombinant CCII (rCCII) might avoid potential pathogenic virus contamination during nCCII preparation or chromosomal integration and oncogene activation associated with DNA vaccines, here we evaluated the importance of propeptide and telopeptide domains on rCCII triple helix molecular assembly. We constructed pC- and pN-procollagen (without N- or C-propeptides, respectively) as well as CTEs located in the triple helical domain lacking both propeptides and telopeptides, and expressed these in yeast Pichia pastoris host strain GS115 (his4, Mut+) simultaneously with recombinant chicken prolyl-4-hydroxylase α and β subunits. Both pC- and pN-procollagen monomers accumulated inside P. pastoris cells, whereas CTE was assembled into homotrimers with stable conformation and secreted into the supernatants, suggesting that the large molecular weight pC-or pN-procollagens were retained within the endoplasmic reticulum whereas the smaller CTEs proceeded through the secretory pathway. Furthermore, resulting recombinant chicken type II collagen pCα1(II) can induced collagen-induced arthritis (CIA) rat model, which seems to be as effective as the current standard nCCII. Notably, protease digestion assays showed that rCCII could assemble in the absence of C- and N-propeptides or telopeptides. These findings provide new insights into the minimal structural requirements for rCCII expression and folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ala-Kokko, L., and Prockop, D.J. (1990). Completion of the intron-exon structure of the gene for human type II procollagen (COL2A1): variations in the nucleotide sequences of the alleles from three chromosomes. Genomics 8, 454–460.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, W.V., Fertala, A., Sieron, A.L., Hattori, H., Mechling, D., Bächinger, H.P., and Prockop, D.J. (1998). Recombinant procollagen II: deletion of D period segments identifies sequences that are required for helix stabilization and generates a temperature-sensitive N-proteinase cleavage site. J Biol Chem 273, 31822–31828.

    Article  PubMed  CAS  Google Scholar 

  • Barnett, M.L., Kremer, J.M., St Clair, E.M., Clegg, D.O., Furst, D., Weisman, M., Fletcher, M.J., ChasanTaber, S., Finger, E., Morales, A., Le, C.H., and Trentham, D.E. (1998). Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo- controlled trial. Arthritis Rheum 41, 290–297.

    PubMed  CAS  Google Scholar 

  • Bornstein, P., and Sage, H. (1980). Structurally distinct collagen types. Annu Rev Biochem 49, 957–1003.

    Article  PubMed  CAS  Google Scholar 

  • Bruckner, P., and Prockop, D.J. (1981). Proteolytic enzymes as probes for the triple-helical conformation of procollagen. Anal Biochem 110, 360–368.

    Article  PubMed  CAS  Google Scholar 

  • Bulleid, N.J., Wilson, R., and Lees, J.F. (1996). Type-III procollagen assembly in semi-intact cells: chain association, nucleation and triple-helix folding do not require formation of inter-chain disulphide bonds but triple-helix nucleation does require hydroxylation. Biochem J 317, 195–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comper, W.D., and Veis, A. (1977). The mechanism of nucleation for in vitro collagen fibril formation. Biopolymers 16, 2113–2131.

    Article  PubMed  CAS  Google Scholar 

  • Du, F., Acland, G.M., and Ray, J. (2000). Cloning and expression of type II collagen mRNA: evaluation as a candidate for canine oculo-skeletal dysplasia. Gene 255, 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Fertala, A., Holmes, D.F., Kadler, K.E., Sieron, A.L., and Prockop, D.J. (1996). Assembly in vitro of thin and thick fibrils of collagen II from recombinant procollagen II. The monomers in the tips of thick fibrils have the opposite orientation from monomers in the growing tips of collagen I fibrils. J Biol Chem 271, 14864–14869.

    Article  PubMed  CAS  Google Scholar 

  • Fertala, A., Sieron, A.L., Hojima, Y., Ganguly, A., and Prockop, D.J. (1994). Self-assembly into fibrils of collagen II by enzymic cleavage of recombinant procollagen II. Lag period, critical concentration, and morphology of fibrils differ from collagen I. J Biol Chem 269, 11584–11589.

    PubMed  CAS  Google Scholar 

  • Gelman, R.A., Poppke, D.C., and Piez, K.A. (1979). Collagen fibril formation in vitro. The role of the nonhelical terminal regions. J Biol Chem 254, 11741–11745.

    PubMed  CAS  Google Scholar 

  • Horton, W.A. (1984). In: Practice of Pediatrics, V.C. Kell, ed. (Philadelphia: Harper and Row), pp. 71–15.

    Google Scholar 

  • Kaadler, K.E. (1995). In: Protein Profile, P., Sheterline, ed. (London: Academic Press, Inc.), pp. 491–619.

    Google Scholar 

  • Keizer-Gunnink, I., Vuorela, A., Myllyharju, J., Pihlajaniemi, T., Kivirikko, K.I., and Veenhuis, M. (2000). Accumulation of properly folded human type III procollagen molecules in specific intracellular membranous compartments in the yeast Pichia pastoris. Matrix Biol 19, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsova, N., and Leikin, S. (1999). Does the triple helical domain of type I collagen encode molecular recogmition and fiber assemble while telopeptides serve as catalytic domains? J Biol Chem 274, 36083–36088.

    Article  PubMed  CAS  Google Scholar 

  • Lees, J.F., Tasab, M., and Bulleid, N.J. (1997). Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J 16, 908–916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long, J., Zhao, X., Yun, S., Zhang, Z., Jin, J., Yu, K., Hao, Y., Dai, D., Ding, L., Tan, L., Liang, F., Liu, N., Yuan, F., Sun, Y., and Xi, Y. (2015). Safety and immunogenicity of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats. Hum Vaccin Immunother 11, 2777–2783.

    Article  Google Scholar 

  • Mallon, S. (2008). DNA vaccines: treatment options for autoimmune diseases. Microbiol Mol Gent 4, 99–103.

    Google Scholar 

  • Malmstrom, V., Michaelsson, E., Burkhardt, H., Mattsson, R., Vuorio, E., and Holmdahl, R. (1996). Systemic versus cartilage-specific expression of a type II collagen-specific T-cell epitope determines the level of tolerance and susceptibility to arthritis. Proc Natl Acad Sci USA 93, 4480–4485.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, S.H., and Bulleid, N.J. (1998). Molecular recognition in procollagen chain assembly. Matrix Biol 16, 369–377.

    Article  PubMed  CAS  Google Scholar 

  • McAlinden, A., Smith, T.A., Sandell, L.J., Sandell, L.J., Ficheux, D., Parry, D.A.D., and Hulmes, D.J.S. (2003). Alpha-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J Biol Chem 278, 42200–42207.

    Article  PubMed  CAS  Google Scholar 

  • Myllyharju, J., Nokelainen, M., Vuorela, A., and Kivirikko, K.I. (2000). Expression of recombinant human type I–III collagens in the yeast pichia pastoris. Biochem Soc Trans 28, 353–357.

    PubMed  CAS  Google Scholar 

  • Myers, L.K., Cooper, S.W., Terato, K., Seyer, J.M., Stuart, J.M., and Kang, A.H. (1995). Identification and characterization of a tolerogenic T cell determinant within residues 181–209 of chick type II collagen. Clin Immunol Immunopathol 75, 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Nokelainen, M., Tu, H., Vuorela, A., Notbohm, H., Kivirikko, K.I., and Myllyharju, J. (2001). High-level production of human type I collagen in the yeast Pichia pastoris. Yeast 18, 797–806.

    Article  PubMed  CAS  Google Scholar 

  • Nokelainen, M., Helaakoski, T., Myllyharju, J., Notbohm, H., Pihlajaniemi, T., Fietzek, P.P., and Kivirikko, K.I. (1998). Expression and characterization of recombinant human type II collagens with low and high contents of hydroxylysine and its glycosylated forms. Matrix Biol 16, 329–338.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, D.R., Leigh, S.D., Chang, R., McMullin, H., Ong, W., Tai, E., Chisholm, G., Birk, D.E., Berg, R.A., Hitzeman, R.A., and Toman, P.D. (2001). Production of human type I collagen in yeast reveals unexpected new insights into the molecular assembly of collagen trimers. J Biol Chem 276, 24038–24043.

    Article  PubMed  CAS  Google Scholar 

  • Pace, J.M., Kuslich, C.D., Willing, M.C., and Byers, P.H. (2001). Disruption of one intra-chain disulphide bond in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I procollagen permits slow assembly and secretion of overmodified, but stable procollagen trimers and results in mild osteogenesis imperfecta. J Med Genet 38, 443–449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pakkanen, O., Hamaanen, E.R., Kivirikko, K.I., and Myllyhaarju, J. (2003). Assembly of stable human type I and III collagen molecules from hydroxylated recombinant chains in the yeast Pichia pastoris. Effect of an engineered C-terminal oligomerization domain foldon. J Biol Chem 278, 32478–32483.

    Article  PubMed  CAS  Google Scholar 

  • Prockop, D.J., and Kivirikko, K.I. (1995). Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64, 403–434.

    Article  PubMed  CAS  Google Scholar 

  • Prockop, D.J., and Fertala, A. (1998). Inhibition of the self-assembly of collagen I into fibrils with synthetic peptides. Demonstration that assembly is driven by specific binding sites on the monomers. J Biol Chem 273, 15598–15604.

    Article  PubMed  CAS  Google Scholar 

  • Snellman, A., Keränen, M.R., Hägg, P.O., Lamberg, A., Hiltunen, J.K., Kivirikko, K.I., and Pihlajaniemi, T. (2000). Type XIII collagen forms homotrimers with three triple helical collagenous domains and its association into disulfide-bonded trimers is enhanced by prolyl 4-hydroxylase. J Biol Chem 275, 8936–8944.

    Article  PubMed  CAS  Google Scholar 

  • Song, X., Liang, F., Liu, N., Luo, Y., Xue, H., Yuan, F., Tan, L., Sun, Y., Xi, C., and Xi, Y. (2009). Construction and characterization of a novel DNA vaccine that is potent antigen-specific tolerizing therapy for experimental arthritis by increasing CD4+CD25+Treg cells and inducing Th1 to Th2 shift in both cells and cytokines. Vaccine 27, 690–700.

    Article  PubMed  CAS  Google Scholar 

  • Su, M.W., Lee, B., Ramirez, F., Machado, M., and Horton, W. (1989). Nucleotide sequence of the full length cDNA encoding for human type II procollagen. Nucl Acids Res 17, 9473–9473.

    Article  PubMed  CAS  Google Scholar 

  • Toman, P.D., Chisholm, G., McMullin, H., Giere, L.M., Olsen, D.R., Kovach, R.J., Leigh, S.D., Fong, B.E., Chang, R., Daniels, G.A., Berg, R. A., and Hitzeman, R.A. (2000). Production of recombinant human type I procollagen trimers using a four-gene expression system in the yeast Saccharomyces cerevisiae. J Biol Chem 275, 23303–23309.

    Article  PubMed  CAS  Google Scholar 

  • Trentham, D.E., Dynesius-Trentham, R.A., Orav, E.J., Combitchi, D., Lorenzo, C., Sewell, K.L., Hafler, D.A., and Weiner, H.L. (1993). Effects of oral administration of type II collagen on rheumatoid arthritis. Science 261, 1727–1730.

    Article  PubMed  CAS  Google Scholar 

  • Vuorela, A., Myllyharju, J., Pihlajaniemi, T., and Kivirikko, K.I. (1999). Coexpression with collagen markedly increases the half-life of the recombinant human prolyl 4-hydroxylase tetramer in the yeast Pichia pastoris. Matrix Biol 18, 519–522.

    Article  PubMed  CAS  Google Scholar 

  • Vuorela, A., Myllyharju, J., Nissi, R., Pihlajaniemi, T., and Kivirikko, K.I. (1997). Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J 16, 6702–6712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei, W., Zhang, L.L., Xu, J.H., Xiao, F., Bao, C.D., Ni, L.Q., Li, X.F., Wu, Y.Q., Sun, L.Y., Zhang, R.H., Sun, B.L., Xu, S.Q., Liu, S., Zhang, W., Shen, J., Liu, H.X., and Wang, R.C. (2009). A multicenter, doubleblind, randomized, controlled phase III clinical trial of chicken type II collagen in rheumatoid arthritis. Arthritis Res Ther 11, R180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xi, C., Tan, L., Sun, Y., Liang, F., Liu, N., Xue, H., Luo, Y., Yuan, F., Sun, Y., and Xi, Y. (2009). A novel recombinant peptide containing only two T-cell tolerance epitopes of chicken type II collagen that suppresses collagen-induced arthritis. Mol Immunol 46, 729–737.

    Article  PubMed  CAS  Google Scholar 

  • Xi, C., Liu, N., Liang, F., Guo, S., Sun, Y., Yang, F., and Xi, Y. (2006). Molecular cloning, characterization and localization of chicken type II procollagen gene. Gene 366, 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L.L., Wei, W., Xiao, F., Xu, J.H., Bao, C.D., Ni, L.Q., and Li, X.F. (2008). A randomized, double-blind, multicenter, controlled clinical trial of chicken type II collagen in patients with rheumatoid arthritis. Arthritis Rheum 59, 905–910.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., Long, J., Yun, S., Zhang, Z., Jin, J., Yu, K., Hao, Y., Dai, D., Ding, L., Tan, L., Liang, F., Liu, N., Fang, Y., Sun, Y., and Xi, Y. (2015). Evaluation of humoral and cellular immune responses to a DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats. Hum Vaccin Immunother 11, 938–945.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, C., Liu, N., Liang, F. et al. Molecular assembly of recombinant chicken type II collagen in the yeast Pichia pastoris. Sci. China Life Sci. 61, 815–825 (2018). https://doi.org/10.1007/s11427-017-9219-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9219-4

Keywords

Navigation