Science China Life Sciences

, Volume 61, Issue 5, pp 610–612 | Cite as

RNA methylation regulates hematopoietic stem/progenitor cell specification

  • Chunxia Zhang
  • Feng LiuEmail author
Research Highlight


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilo, F., Zhang, F., Sancho, A., Fidalgo, M., Di Cecilia, S., Vashisht, A., Lee, D.F., Chen, C.H., Rengasamy, M., Andino, B., Jahouh, F., Roman, A., Krig, S.R., Wang, R., Zhang, W., Wohlschlegel, J.A., Wang, J., and Walsh, M.J. (2015). Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 17, 689–704.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alarcón, C.R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S., and Tavazoie, S.F. (2015a). HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162, 1299–1308.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alarcón, C.R., Lee, H., Goodarzi, H., Halberg, N., and Tavazoie, S.F. (2015b). N 6-methyladenosine marks primary microRNAs for processing. Nature 519, 482–485.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Batista, P.J., Molinie, B., Wang, J., Qu, K., Zhang, J., Li, L., Bouley, D.M., Lujan, E., Haddad, B., Daneshvar, K., Carter, A.C., Flynn, R.A., Zhou, C., Lim, K.S., Dedon, P., Wernig, M., Mullen, A.C., Xing, Y., Giallourakis, C.C., and Chang, H.Y. (2014). m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bertrand, J.Y., Chi, N.C., Santoso, B., Teng, S., Stainier, D.Y.R., and Traver, D. (2010). Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boisset, J.C., van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E., and Robin, C. (2010). In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116–120.CrossRefPubMedGoogle Scholar
  7. Chen, T., Hao, Y.J., Zhang, Y., Li, M.M., Wang, M., Han, W., Wu, Y., Lv, Y., Hao, J., Wang, L., Li, A., Yang, Y., Jin, K.X., Zhao, X., Li, Y., Ping, X.L., Lai, W.Y., Wu, L.G., Jiang, G., Wang, H.L., Sang, L., Wang, X.J., Yang, Y.G., and Zhou, Q. (2015). m6A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 16, 289–301.CrossRefPubMedGoogle Scholar
  8. Fustin, J.M., Doi, M., Yamaguchi, Y., Hida, H., Nishimura, S., Yoshida, M., Isagawa, T., Morioka, M.S., Kakeya, H., Manabe, I., and Okamura, H. (2013). RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155, 793–806.CrossRefPubMedGoogle Scholar
  9. Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A.A.F., Kol, N., Salmon-Divon, M., Hershkovitz, V., Peer, E., Mor, N., Manor, Y.S., Ben-Haim, M.S., Eyal, E., Yunger, S., Pinto, Y., Jaitin, D.A., Viukov, S., Rais, Y., Krupalnik, V., Chomsky, E., Zerbib, M., Maza, I., Rechavi, Y., Massarwa, R., Hanna, S., Amit, I., Levanon, E.Y., Amariglio, N., Stern-Ginossar, N., Novershtern, N., Rechavi, G., and Hanna, J.H. (2015). m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347, 1002–1006.CrossRefPubMedGoogle Scholar
  10. Haussmann, I.U., Bodi, Z., Sanchez-Moran, E., Mongan, N.P., Archer, N., Fray, R.G., and Soller, M. (2016). m6A potentiates Sxl alternative premRNA splicing for robust Drosophila sex determination. Nature 540, 301–304.CrossRefPubMedGoogle Scholar
  11. Jia, G., Fu, Y., and He, C. (2013). Reversible RNA adenosine methylation in biological regulation. Trends Genet 29, 108–115.CrossRefPubMedGoogle Scholar
  12. Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G., and He, C. (2011). N 6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7, 885–887.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kissa, K., and Herbomel, P. (2010). Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115.CrossRefPubMedGoogle Scholar
  14. Lence, T., Akhtar, J., Bayer, M., Schmid, K., Spindler, L., Ho, C.H., Kreim, N., Andrade-Navarro, M.A., Poeck, B., Helm, M., and Roignant, J.Y. (2016). m6A modulates neuronal functions and sex determination in Drosophila. Nature 540, 242–247.CrossRefPubMedGoogle Scholar
  15. Li, H.B., Tong, J., Zhu, S., Batista, P.J., Duffy, E.E., Zhao, J., Bailis, W., Cao, G., Kroehling, L., Chen, Y., Wang, G., Broughton, J.P., Chen, Y. G., Kluger, Y., Simon, M.D., Chang, H.Y., Yin, Z., and Flavell, R.A. (2017). m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548, 338–342.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., Dai, Q., Chen, W., and He, C. (2014). A METTL3-METTL14 complex mediates mammalian nuclear RNA N 6-adenosine methylation. Nat Chem Biol 10, 93–95.CrossRefPubMedGoogle Scholar
  17. Lizama, C.O., Hawkins, J.S., Schmitt, C.E., Bos, F.L., Zape, J.P., Cautivo, K.M., Borges Pinto, H., Rhyner, A.M., Yu, H., Donohoe, M.E., Wythe, J.D., and Zovein, A.C. (2015). Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition. Nat Commun 6, 7739.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Meyer, K.D., Patil, D.P., Zhou, J., Zinoviev, A., Skabkin, M.A., Elemento, O., Pestova, T.V., Qian, S.B., and Jaffrey, S.R. (2015). 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Niu, Y., Zhao, X., Wu, Y.S., Li, M.M., Wang, X.J., and Yang, Y.G. (2013). N 6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics 11, 8–17.CrossRefPubMedGoogle Scholar
  20. Patil, D.P., Chen, C.K., Pickering, B.F., Chow, A., Jackson, C., Guttman, M., and Jaffrey, S.R. (2016). m6A RNA methylation promotes XISTmediated transcriptional repression. Nature 537, 369–373.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ping, X.L., Sun, B.F., Wang, L., Xiao, W., Yang, X., Wang, W.J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.S., Zhao, X., Li, A., Yang, Y., Dahal, U., Lou, X.M., Liu, X., Huang, J., Yuan, W.P., Zhu, X.F., Cheng, T., Zhao, Y.L., Wang, X., Rendtlew Danielsen, J.M., Liu, F., and Yang, Y.G. (2014). Mammalian WTAP is a regulatory subunit of the RNA N 6-methyladenosine methyltransferase. Cell Res 24, 177–189.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Richard, C., Drevon, C., Canto, P.Y., Villain, G., Bollérot, K., Lempereur, A., Teillet, M.A., Vincent, C., Rosselló Castillo, C., Torres, M., Piwarzyk, E., Speck, N.A., Souyri, M., and Jaffredo, T. (2013). Endotheliomesenchymal interaction controls runx1 expression and modulates the notch pathway to initiate aortic hematopoiesis. Dev Cell 24, 600–611.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Schwartz, S., Mumbach, M.R., Jovanovic, M., Wang, T., Maciag, K., Bushkin, G.G., Mertins, P., Ter-Ovanesyan, D., Habib, N., Cacchiarelli, D., Sanjana, N.E., Freinkman, E., Pacold, M.E., Satija, R., Mikkelsen, T.S., Hacohen, N., Zhang, F., Carr, S.A., Lander, E.S., and Regev, A. (2014). Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 8, 284–296.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Shen, L., Liang, Z., Gu, X., Chen, Y., Teo, Z.W.N., Hou, X., Cai, W.M., Dedon, P.C., Liu, L., and Yu, H. (2016). N 6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. Dev Cell 38, 186–200.CrossRefPubMedGoogle Scholar
  25. Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., Ren, B., Pan, T., and He, C. (2014a). N 6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120.CrossRefPubMedGoogle Scholar
  26. Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., and He, C. (2015). N 6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wang, Y., Li, Y., Toth, J.I., Petroski, M.D., Zhang, Z., and Zhao, J.C. (2014b). N 6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16, 191–198.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Xiang, Y., Laurent, B., Hsu, C.H., Nachtergaele, S., Lu, Z., Sheng, W., Xu, C., Chen, H., Ouyang, J., Wang, S., Ling, D., Hsu, P.H., Zou, L., Jambhekar, A., He, C., and Shi, Y. (2017). RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 543, 573–576.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Xiao, W., Adhikari, S., Dahal, U., Chen, Y.S., Hao, Y.J., Sun, B.F., Sun, H. Y., Li, A., Ping, X.L., Lai, W.Y., Wang, X., Ma, H.L., Huang, C.M., Yang, Y., Huang, N., Jiang, G.B., Wang, H.L., Zhou, Q., Wang, X.J., Zhao, Y.L., and Yang, Y.G. (2016). Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell 61, 507–519.CrossRefPubMedGoogle Scholar
  30. Zhang, C., Chen, Y., Sun, B., Wang, L., Yang, Y., Ma, D., Lv, J., Heng, J., Ding, Y., Xue, Y., Lu, X., Xiao, W., Yang, Y.G., and Liu F. (2017). m6A modulates haematopoietic stem and progenitor cell specification. Nature 549, 273–276.CrossRefPubMedGoogle Scholar
  31. Zhang, C., Lv, J., He, Q., Wang, S., Gao, Y., Meng, A., Yang, X., and Liu, F. (2014). Inhibition of endothelial ERK signalling by Smad1/5 is essential for haematopoietic stem cell emergence. Nat Commun 5, 3431.PubMedCrossRefGoogle Scholar
  32. Zhang, P., He, Q., Chen, D., Liu, W., Wang, L., Zhang, C., Ma, D., Li, W., Liu, B., and Liu, F. (2015). G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Res 25, 1093–1107.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zhao, B.S., and He, C. (2015). Fate by RNA methylation: m6A steers stem cell pluripotency. Genome Biol 16, 43.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zhao, B.S., Wang, X., Beadell, A.V., Lu, Z., Shi, H., Kuuspalu, A., Ho, R. K., and He, C. (2017). m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542, 475–478.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhao, X., Yang, Y., Sun, B.F., Shi, Y., Yang, X., Xiao, W., Hao, Y.J., Ping, X.L., Chen, Y.S., Wang, W.J., Jin, K.X., Wang, X., Huang, C.M., Fu, Y., Ge, X.M., Song, S.H., Jeong, H.S., Yanagisawa, H., Niu, Y., Jia, G.F., Wu, W., Tong, W.M., Okamoto, A., He, C., Rendtlew Danielsen, J.M., Wang, X.J., and Yang, Y.G. (2014). FTO-dependent demethylation of N 6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24, 1403–1419.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., Vågbø, C.B., Shi, Y., Wang, W.L., Song, S.H., Lu, Z., Bosmans, R.P.G., Dai, Q., Hao, Y.J., Yang, X., Zhao, W.M., Tong, W.M., Wang, X.J., Bogdan, F., Furu, K., Fu, Y., Jia, G., Zhao, X., Liu, J., Krokan, H.E., Klungland, A., Yang, Y.G., and He, C. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49, 18–29.CrossRefPubMedGoogle Scholar
  37. Zhou, J., Wan, J., Gao, X., Zhang, X., Jaffrey, S.R., and Qian, S.B. (2015). Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations