Skip to main content
Log in

Conservation analysis of long non-coding RNAs in plants

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) are gene regulators that have vital roles in development and adaptation to the environment in eukaryotes. However, the structural and evolutionary analyses of plant lncRNAs are limited. In this study, we performed an analysis of lncRNAs in five monocot and five dicot species. Our results showed that plant lncRNA genes were generally shorter and had fewer exons than protein-coding genes. The numbers of lncRNAs were positively correlated with the numbers of protein-coding genes in different plant species, despite a high range of variation. Sequence conservation analysis showed that the majority of lncRNAs had high sequence conservation at the intra-species and sub-species levels, reminiscent of protein-coding genes. At the inter-species level, a subset of lncRNAs were highly diverged at the nucleotide level, but conserved by position. Interestingly, we found that plant lncRNAs have identical splicing signals, and those which can form precursors or targets of miRNAs have a conservative identity in different species. We also revealed that most of the lowly expressed lncRNAs were tissue-specific, while those highly conserved were constitutively transcribed. Meanwhile, we characterized a subset of rice lncRNAs that were co-expressed with their adjacent protein-coding genes, suggesting they may play cis-regulatory roles. These results will contribute to understanding the biological significance and evolution of lncRNAs in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chernikova, D., Managadze, D., Glazko, G.V., Makalowski, W., and Rogozin, I.B. (2016). Conservation of the exon-intron structure of long intergenic non-coding RNA genes in eutherian mammals. Life 6, 27.

    Article  PubMed Central  Google Scholar 

  • Cui, X., Lv, Y., Chen, M., Nikoloski, Z., Twell, D., and Zhang, D. (2015). Young genes out of the male: an insight from evolutionary age analysis of the pollen transcriptome. Mol Plant 8, 935–945.

    Article  CAS  PubMed  Google Scholar 

  • Dai, X., and Zhao, P.X. (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39, W155–W159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D.G., Lagarde, J., Veeravalli, L., Ruan, X., Ruan, Y., Lassmann, T., Carninci, P., Brown, J.B., Lipovich, L., Gonzalez, J.M., Thomas, M., Davis, C.A., Shiekhattar, R., Gingeras, T.R., Hubbard, T.J., Notredame, C., Harrow, J., and Guigó, R. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22, 1775–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent, W.J. (2002). BLAT—The BLAST-like alignment tool. Genome Res 12, 656–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khemka, N., Singh, V.K., Garg, R., and Jain, M. (2016). Genome-wide analysis of long intergenic non-coding RNAs in chickpea and their potential role in flower development. Sci Rep 6, 33297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, L., Eichten, S.R., Shimizu, R., Petsch, K., Yeh, C.T., Wu, W., Chettoor, A.M., Givan, S.A., Cole, R.A., Fowler, J.E., Evans, M.M.S., Scanlon, M.J., Yu, J., Schnable, P.S., Timmermans, M.C.P., Springer, N.M., and Muehlbauer, G.J. (2014). Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15, R40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Wang, H., and Chua, N.H. (2015). Long noncoding RNA transcriptome of plants. Plant Biotechnol J 13, 319–328.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Jung, C., Xu, J., Wang, H., Deng, S., Bernad, L., Arenas-Huertero, C., and Chua, N.H. (2012). Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24, 4333–4345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer, T.R., Dinger, M.E., and Mattick, J.S. (2009). Long non-coding RNAs: insights into functions. Nat Rev Genet 10, 155–159.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadin, S., Edger, P.P., Pires, J.C., and Schranz, M.E. (2015). Positionally- conserved but sequence-diverged: identification of long noncoding RNAs in the Brassicaceae and Cleomaceae. BMC Plant Biol 15, 217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Necsulea, A., Soumillon, M., Warnefors, M., Liechti, A., Daish, T., Zeller, U., Baker, J.C., Grützner, F., and Kaessmann, H. (2014). The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635–640.

    Article  CAS  PubMed  Google Scholar 

  • Nitsche, A., Rose, D., Fasold, M., Reiche, K., and Stadler, P.F. (2015). Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. RNA 21, 801–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordberg, H., Cantor, M., Dusheyko, S., Hua, S., Poliakov, A., Shabalov, I., Smirnova, T., Grigoriev, I.V., and Dubchak, I. (2014). The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucl Acids Res 42, D26–D31.

    Article  CAS  PubMed  Google Scholar 

  • Pang, K.C., Frith, M.C., and Mattick, J.S. (2006). Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genets 22, 1–5.

    Article  CAS  Google Scholar 

  • Paytuví Gallart, A., Hermoso Pulido, A., Anzar Martínez de Lagrán, I., Sanseverino, W., and Aiese Cigliano, R. (2016). GREENC: a Wiki-based database of plant lncRNAs. Nucleic Acids Res 44, D1161–D1166.

    Article  PubMed  Google Scholar 

  • Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11, 1650–1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St Laurent, G., Shtokalo, D., Tackett, M.R., Yang, Z., Eremina, T., Wahlestedt, C., Urcuqui-Inchima, S., Seilheimer, B., McCaffrey, T.A., and Kapranov, P. (2012). Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics 13, 504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., and Wang, J.W. (2015). Coding function for non-coding RNA in plants-insights from miRNA encoded peptide (miPEP). Sci China Life Sci 58, 503–505.

    Article  PubMed  Google Scholar 

  • Yanai, I., Benjamin, H., Shmoish, M., Chalifa-Caspi, V., Shklar, M., Ophir, R., Bar-Even, A., Horn-Saban, S., Safran, M., Domany, E., Lancet, D., and Shmueli, O. (2005). Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–659.

    Article  CAS  PubMed  Google Scholar 

  • Zou, C., Wang, Q., Lu, C., Yang, W., Zhang, Y., Cheng, H., Feng, X., Prosper, M.A., and Song, G. (2016). Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). Sci China Life Sci 59, 164–171.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Foundation of China (LR16C060001), the National Key Program on Transgenic Research and the Fundamental Research Funds for the Central Universities (2016QNA6014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wu.

Electronic supplementary material

Figure S1

Distribution of distance from lncRNAs to the nearest gene.

Figure S2

Conservation of acceptor and donor splicing signals in plants.

Table S1

The detail information of lncRNA pairs showed orthologous relationship

Table S2

List of lncRNA pairs showed positional conservation

Table S3

Detailed list of lncRNAs correlated with the expression of adjacent protein-coding genes in rice

Table S4

List of high-abundance lncRNAs co-expressed with protein-coding genes in rice

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, P., Liu, S., Nie, X. et al. Conservation analysis of long non-coding RNAs in plants. Sci. China Life Sci. 61, 190–198 (2018). https://doi.org/10.1007/s11427-017-9174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9174-9

Keywords

Navigation