Science China Life Sciences

, Volume 61, Issue 5, pp 523–533 | Cite as

The regulation effect of AMPK in immune related diseases

Review

Abstract

AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a key role in energetic metabolism regulation. Metabolic changes in immune cells, such as dendritic cell (DC), macrophages, neutrophils and lymphocytes that participate in the signal directed programs that promote or inhibit immune mediated diseases, including cancer, atherosclerosis and inflammatory diseases. Multiple pathogenic mechanisms are involved in the initiation and progression of disease, and many pathways have been uncovered. The mechanistic overlap in the metabolic changes and inflammation could indicate that some of the targets they have are in common, whereas AMPK could be useful in treatment of both disorders. The insight into identification of AMPK responsible for specific immune regulation, anti-inflammatory actions and understanding of the underlying molecular mechanism will promote the generation of novel AMPK activators, and provide novel therapy strategy.

Keywords

AMPK metabolic changes immune cells atherosclerosis cancer inflammation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Science and Technology Innovation Team of Shanxi Province (201605D131045-18) and Key Laboratory of Effective Substances Research and Utilization in Traditional Chinese Medicine of Shanxi Province (201605D111004).

References

  1. Abbas, A.K., Murphy, K.M., and Sher, A. (1996). Functional diversity of helper T lymphocytes. Nature 383, 787–793.PubMedCrossRefGoogle Scholar
  2. Abdel Malik, R., Zippel, N., Frömel, T., Heidler, J., Zukunft, S., Walzog, B., Ansari, N., Pampaloni, F., Wingert, S., Rieger, M.A., Wittig, I., Fisslthaler, B., and Fleming, I. (2017). AMP-activated protein kinase a2 in neutrophils regulates vascular repair via hypoxia-inducible factor-1a and a network of proteins affecting metabolism and apoptosisnovelty and significance. Circ Res 120, 99–109.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahn, J., Lee, H., Kim, S., Park, J., and Ha, T. (2008). The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 373, 545–549.PubMedCrossRefGoogle Scholar
  4. Alba, G., El Bekay, R., Álvarez-Maqueda, M., Chacón, P., Vega, A., Monteseirín, J., Santa María, C., Pintado, E., Bedoya, F.J., Bartrons, R., and Sobrino, F. (2004). Stimulators of AMP-activated protein kinase inhibit the respiratory burst in human neutrophils. FEBS Lett 573, 219–225.PubMedCrossRefGoogle Scholar
  5. Auffray, C., Sieweke, M.H., and Geissmann, F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27, 669–692.PubMedCrossRefGoogle Scholar
  6. Bae, H.B., Zmijewski, J.W., Deshane, J.S., Tadie, J.M., Chaplin, D.D., Takashima, S., and Abraham, E. (2011). AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils. FASEB J 25, 4358–4368.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bae, Y.A., and Cheon, H.G. (2016). Activating transcription factor-3 induction is involved in the anti-inflammatory action of berberine in RAW264.7 murine macrophages. Korean J Physiol Pharmacol 20, 415–424.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bai, A., Ma, A.G., Yong, M., Weiss, C.R., Ma, Y., Guan, Q., Bernstein, C.N., and Peng, Z. (2010a). AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis. Biochem Pharmacol 80, 1708–1717.PubMedCrossRefGoogle Scholar
  9. Bai, A., Yong, M., Ma, A.G., Ma, Y., Weiss, C.R., Guan, Q., Bernstein, C.N., and Peng, Z. (2010b). Novel anti-inflammatory action of 5-aminoimidazole- 4-carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis. J Pharmacol Exp Therapeutics 333, 717–725.CrossRefGoogle Scholar
  10. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., and Palucka, K. (2000). Immunobiology of dendritic cells. Annu Rev Immunol 18, 767–811.PubMedCrossRefGoogle Scholar
  11. Bennett, W.E., and Cohn, Z.A. (1966). The isolation and selected properties of blood monocytes. J Exp Med 123, 145–160.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bhavsar, S.K., Schmidt, S., Bobbala, D., Nurbaeva, M.K., Hosseinzadeh, Z., Merches, K., Fajol, A., Wilmes, J., and Lang, F. (2013). AMPKa1-sensitivity of orai1 and Ca2+ entry in T-lymphocytes. Cell Physiol Biochem 32, 687–698.PubMedCrossRefGoogle Scholar
  13. Blagih, J., Coulombe, F., Vincent, E.E., Dupuy, F., Galicia-Vázquez, G., Yurchenko, E., Raissi, T.C., van der Windt, G.J.W., Viollet, B., Pearce, E.L., Pelletier, J., Piccirillo, C.A., Krawczyk, C.M., Divangahi, M., and Jones, R.G. (2015). The energy sensor ampk regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41–54.PubMedCrossRefGoogle Scholar
  14. Blagih, J., Krawczyk, C.M., and Jones, R.G. (2012). LKB1 and AMPK: central regulators of lymphocyte metabolism and function. Immunol Rev 249, 59–71.PubMedCrossRefGoogle Scholar
  15. Carling, D. (2004). The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci 29, 18–24.PubMedCrossRefGoogle Scholar
  16. Chen, B., Li, J., and Zhu, H. (2016). AMP-activated protein kinase attenuates oxLDL uptake in macrophages through PP2A/NF-κB/LOX-1 pathway. Vasc Pharmacol 85, 1–10.CrossRefGoogle Scholar
  17. Chiang, C.F., Chao, T.T., Su, Y.F., Hsu, C.C., Chien, C.Y., Chiu, K.C., Shiah, S.G., Lee, C.H., Liu, S.Y., and Shieh, Y.S. (2017). Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-kappaB signaling. Oncotarget 8, 20706–20718.PubMedPubMedCentralGoogle Scholar
  18. Choi, H.C., Song, P., Xie, Z., Wu, Y., Xu, J., Zhang, M., Dong, Y., Wang, S., Lau, K., and Zou, M.H. (2008). Reactive nitrogen species is required for the activation of the AMP-activated protein kinase by statin in vivo. J Biol Chem 283, 20186–20197.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Comalada, M., Camuesco, D., Sierra, S., Ballester, I., Xaus, J., Gálvez, J., and Zarzuelo, A. (2005). In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. Eur J Immunol 35, 584–592.PubMedCrossRefGoogle Scholar
  20. Condeelis, J., and Pollard, J.W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266.PubMedCrossRefGoogle Scholar
  21. Dang, E.V., Barbi, J., Yang, H.Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Fu, J., Kim, Y., Yen, H.R., Luo, W., Zeller, K., Shimoda, L., Topalian, S.L., Semenza, G.L., Dang, C.V., Pardoll, D.M., and Pan, F. (2011). Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ding, L., Liang, G., Yao, Z., Zhang, J., Liu, R., Chen, H., Zhou, Y., Wu, H., Yang, B., and He, Q. (2015). Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages. Oncotarget 6, 36441–36455.PubMedPubMedCentralGoogle Scholar
  23. El-Mir, M.Y., Nogueira, V., Fontaine, E., Avéret, N., Rigoulet, M., and Leverve, X. (2000). Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275, 223–228.PubMedCrossRefGoogle Scholar
  24. Fracchia, K.M., Pai, C.Y., and Walsh, C.M. (2013). Modulation of T cell metabolism and function through calcium signaling. Front Immunol 4, 324.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Galdieri, L., Gatla, H., Vancurova, I., and Vancura, A. (2016). Activation of AMP-activated protein kinase by metformin induces protein acetylation in prostate and ovarian cancer cells. J Biol Chem 291, 25154–25166.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Geissmann, F., Auffray, C., Palframan, R., Wirrig, C., Ciocca, A., Campisi, L., Narni-Mancinelli, E., and Lauvau, G. (2008). Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol 86, 398–408.PubMedCrossRefGoogle Scholar
  27. Geissmann, F., Jung, S., and Littman, D.R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82.PubMedCrossRefGoogle Scholar
  28. Göransson, O., McBride, A., Hawley, S.A., Ross, F.A., Shpiro, N., Foretz, M., Viollet, B., Hardie, D.G., and Sakamoto, K. (2007). Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem 282, 32549–32560.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gualdoni, G.A., Mayer, K.A., Goschl, L., Boucheron, N., Ellmeier, W., and Zlabinger, G.J. (2016). The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J 30, 3800–3809.PubMedCrossRefGoogle Scholar
  30. Guma, M., Wang, Y., Viollet, B., and Liu-Bryan, R. (2015). AMPK activation by A-769662 controls IL-6 expression in inflammatory arthritis. PLoS ONE 10, e0140452.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hardie, D.G., and Hawley, S.A. (2001). AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23, 1112–1119.PubMedCrossRefGoogle Scholar
  32. Hawley, S.A., Boudeau, J., Reid, J.L., Mustard, K.J., Udd, L., Mäkelä, T.P., Alessi, D.R., and Hardie, D.G. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2, 28.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hawley, S.A., Pan, D.A., Mustard, K.J., Ross, L., Bain, J., Edelman, A.M., Frenguelli, B.G., and Hardie, D.G. (2005). Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2, 9–19.PubMedCrossRefGoogle Scholar
  34. Hawley, S.A., Ross, F.A., Chevtzoff, C., Green, K.A., Evans, A., Fogarty, S., Towler, M.C., Brown, L.J., Ogunbayo, O.A., Evans, A.M., and Hardie, D.G. (2010). Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11, 554–565.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ho, I.C., and Glimcher, L.H. (2002). Transcription. Cell 109, S109–S120.PubMedCrossRefGoogle Scholar
  36. Ishii, N., Matsumura, T., Kinoshita, H., Motoshima, H., Kojima, K., Tsutsumi, A., Kawasaki, S., Yano, M., Senokuchi, T., Asano, T., Nishikawa, T., and Araki, E. (2009). Activation of AMP-activated protein kinase suppresses oxidized low-density lipoprotein-induced macrophage proliferation. J Biol Chem 284, 34561–34569.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jhun, B.S., Jin, Q., Oh, Y.T., Kim, S.S., Kong, Y., Cho, Y.H., Ha, J., Baik, H.H., and Kang, I. (2004). 5-Aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-a production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages. Biochem Biophys Res Commun 318, 372–380.PubMedCrossRefGoogle Scholar
  38. Kang, K.Y., Kim, Y.K., Yi, H., Kim, J., Jung, H.R., Kim, I.J., Cho, J.H., Park, S.H., Kim, H.Y., and Ju, J.H. (2013). Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int Immunopharmacol 16, 85–92.PubMedCrossRefGoogle Scholar
  39. Kopsiaftis, S., Hegde, P., Taylor Iii, J.A., and Claffey, K.P. (2016). AMPKa is suppressed in bladder cancer through Macrophage-Mediated mechanisms. Transl Oncol 9, 606–616.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Krawczyk, C.M., Holowka, T., Sun, J., Blagih, J., Amiel, E., DeBerardinis, R.J., Cross, J.R., Jung, E., Thompson, C.B., Jones, R.G., and Pearce, E.J. (2010). Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kumase, F., Takeuchi, K., Morizane, Y., Suzuki, J., Matsumoto, H., Kataoka, K., Al-Moujahed, A., Maidana, D.E., Miller, J.W., and Vavvas, D.G. (2016). AMPK-activated protein kinase suppresses Ccr2 expression by inhibiting the NF-κB pathway in RAW264.7 macrophages. PLoS ONE 11, e0147279.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Lee, S., Jeong, S., Kim, W., Kim, D., Yang, Y., Yoon, J.H., Kim, B.J., Min, D.S., and Jung, Y. (2017a). Rebamipide induces the gastric mucosal protective factor, cyclooxygenase-2, via activation of 5′-AMP-activated protein kinase. Biochem Biophys Res Commun 483, 449–455.PubMedCrossRefGoogle Scholar
  43. Lee, S.Y., Lee, S.H., Yang, E.J., Kim, E.K., Kim, J.K., Shin, D.Y., and Cho, M.L. (2015). Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. PLoS ONE 10, e0135858.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lee, S.Y., Moon, S.J., Kim, E.K., Seo, H.B., Yang, E.J., Son, H.J., Kim, J.K., Min, J.K., and Park, S.H., (2017b). Metformin suppresses systemic autoimmunity in roquinsan/san mice through inhibiting B cell differentiation into plasma cells via regulation of AMPK/mTOR/STAT3. J Immunol 198, 2661–2670.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Li, D., Wang, D., Wang, Y., Ling, W., Feng, X., and Xia, M. (2010). Adenosine monophosphate-activated protein kinase induces cholesterol efflux from macrophage-derived foam cells and alleviates atherosclerosis in apolipoprotein E-deficient mice. J Biol Chem 285, 33499–33509.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Li, P., Fan, J.B., Gao, Y., Zhang, M., Zhang, L., Yang, N., and Zhao, X. (2016). miR-135b-5p inhibits LPS-induced TNFalpha production via silencing AMPK phosphatase Ppm1e. Oncotarget 7, 77978–77986.PubMedPubMedCentralGoogle Scholar
  47. Li, Y., Xu, S., Jiang, B., Cohen, R.A., and Zang, M. (2013). Activation of sterol regulatory element binding protein and NLRP3 inflammasome in atherosclerotic lesion development in diabetic pigs. PLoS ONE 8, e67532.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Libby, P., Ridker, P.M., and Hansson, G.K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325.PubMedCrossRefGoogle Scholar
  49. Liu, X., Wang, N., Fan, S., Zheng, X., Yang, Y., Zhu, Y., Lu, Y., Chen, Q., Zhou, H., and Zheng, J. (2016). The citrus flavonoid naringenin confers protection in a murine endotoxaemia model through AMPK-ATF3-dependent negative regulation of the TLR4 signalling pathway. Sci Rep 6, 39735.PubMedPubMedCentralCrossRefGoogle Scholar
  50. López-Cotarelo, P., Escribano-Díaz, C., González-Bethencourt, I.L., Gómez-Moreira, C., Deguiz, M.L., Torres-Bacete, J., Gómez-Cabañas, L., Fernández-Barrera, J., Delgado-Martín, C., Mellado, M., Regueiro, J.R., Miranda-Carús, M.E., and Rodríguez-Fernández, J.L. (2015). A novel MEK-ERK-AMPK signaling axis controls chemokine receptor CCR7-dependent survival in human mature dendritic cells. J Biol Chem 290, 827–840.PubMedCrossRefGoogle Scholar
  51. Ma, Z., Fan, C., Yang, Y., Di, S., Hu, W., Li, T., Zhu, Y., Han, J., Xin, Z., Wu, G., Zhao, J., Li, X., and Yan, X. (2016). Thapsigargin sensitizes human esophageal cancer to TRAIL-induced apoptosis via AMPK activation. Sci Rep 6, 35196.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mangalam, A.K., Rattan, R., Suhail, H., Singh, J., Hoda, M.N., Deshpande, M., Fulzele, S., Denic, A., Shridhar, V., Kumar, A., Viollet, B., Rodriguez, M., and Giri, S. (2016). AMP-activated protein kinase suppresses autoimmune central nervous system disease by regulating M1-type macrophage-Th17 axis. J Immunol 197, 747–760.PubMedCrossRefGoogle Scholar
  53. Mayer, A., Denanglaire, S., Viollet, B., Leo, O., and Andris, F. (2008). AMPactivated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur J Immunol 38, 948–956.PubMedCrossRefGoogle Scholar
  54. Michalek, R.D., Gerriets, V.A., Jacobs, S.R., Macintyre, A.N., MacIver, N.J., Mason, E.F., Sullivan, S.A., Nichols, A.G., and Rathmell, J.C. (2011). Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186, 3299–3303.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mooney, M.H., Fogarty, S., Stevenson, C., Gallagher, A.M., Palit, P., Hawley, S.A., Hardie, D.G., Coxon, G.D., Waigh, R.D., Tate, R.J., Harvey, A.L., and Furman, B.L. (2008). Mechanisms underlying the metabolic actions of galegine that contribute to weight loss in mice. Br J Pharmacol 153, 1669–1677.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Murray, P.J., and Wynn, T.A. (2011). Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11, 723–737.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Nath, N., Giri, S., Prasad, R., Salem, M.L., Singh, A.K., and Singh, I. (2005). 5-Aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J Immunol 175, 566–574.PubMedCrossRefGoogle Scholar
  58. Nath, N., Khan, M., Rattan, R., Mangalam, A., Makkar, R.S., de Meester, C., Bertrand, L., Singh, I., Chen, Y., Viollet, B., and Giri, S. (2009). Loss of AMPK exacerbates experimental autoimmune encephalomyelitis disease severity. Biochem Biophys Res Commun 386, 16–20.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Nathan, C. (2002). Points of control in inflammation. Nature 420, 846–852.PubMedCrossRefGoogle Scholar
  60. Newsholme, P., Curi, R., Gordon, S., and Newsholme, E.A. (1986). Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 239, 121–125.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Niu, Y., Dong, Q., and Li, R. (2017). Matrine regulates Th1/Th2 cytokine responses in rheumatoid arthritis by attenuating the NF-κB signaling. Cell Biol Int 41, 611–621.PubMedCrossRefGoogle Scholar
  62. Notarangelo, L.D. (2014). Combined immunodeficiencies with nonfunctional T lymphocytes. Adv Immunol 121, 121–190.PubMedCrossRefGoogle Scholar
  63. Nurbaeva, M.K., Schmid, E., Szteyn, K., Yang, W., Viollet, B., Shumilina, E., and Lang, F. (2012). Enhanced Ca2+ entry and Na+/Ca2+ exchanger activity in dendritic cells from AMP-activated protein kinase-deficient mice. FASEB J 26, 3049–3058.PubMedCrossRefGoogle Scholar
  64. Obba, S., Hizir, Z., Boyer, L., Selimoglu-Buet, D., Pfeifer, A., Michel, G., Hamouda, M.A., Gonçalvès, D., Cerezo, M., Marchetti, S., Rocchi, S., Droin, N., Cluzeau, T., Robert, G., Luciano, F., Robaye, B., Foretz, M., Viollet, B., Legros, L., Solary, E., Auberger, P., and Jacquel, A. (2015). The PRKAA1/AMPKa1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy 11, 1114–1129.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Oren, R., Farnham, A.E., Saito, K., Milofsky, E., and Karnovsky, M.L. (1963). Metabolic patterns in three types of phagocytizing cells. J Cell Biol 17, 487–501.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Owen, M.R., Doran, E., and Halestrap, A.P. (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348, 607–614.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Park, D.W., Jiang, S., Tadie, J.M., Stigler, W.S., Gao, Y., Deshane, J., Abraham, E., and Zmijewski, J.W. (2013). Activation of AMPK enhances neutrophil chemotaxis and bacterial killing. Mol Med 19, 1–398.CrossRefGoogle Scholar
  68. Pearce, E.L., Walsh, M.C., Cejas, P.J., Harms, G.M., Shen, H., Wang, L.S., Jones, R.G., and Choi, Y. (2009). Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Rao, E., Zhang, Y., Li, Q., Hao, J., Egilmez, N.K., Suttles, J., and Li, B. (2016). AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget 7, 33783–33795.PubMedPubMedCentralGoogle Scholar
  70. Rao, E., Zhang, Y., Zhu, G., Hao, J., Persson, X.M.T., Egilmez, N.K., Suttles, J., and Li, B. (2015). Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget 6, 7944–7958.PubMedPubMedCentralGoogle Scholar
  71. Rodriguez-Prados, J.C., Traves, P.G., Cuenca, J., Rico, D., Aragones, J., Martin-Sanz, P., Cascante, M., and Bosca, L. (2010). Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185, 605–614.PubMedCrossRefGoogle Scholar
  72. Rolf, J., Zarrouk, M., Finlay, D.K., Foretz, M., Viollet, B., and Cantrell, D.A. (2013). AMPKa1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol 43, 889–896.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Sag, D., Carling, D., Stout, R.D., and Suttles, J. (2008). Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181, 8633–8641.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Sanders, M.J., Ali, Z.S., Hegarty, B.D., Heath, R., Snowden, M.A., and Carling, D. (2007). Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 282, 32539–32548.PubMedCrossRefGoogle Scholar
  75. Schumacher, T.N.M., Gerlach, C., and van Heijst, J.W.J. (2010). Mapping the life histories of T cells. Nat Rev Immunol 10, 621–631.PubMedCrossRefGoogle Scholar
  76. Shaw, R.J., Kosmatka, M., Bardeesy, N., Hurley, R.L., Witters, L.A., DePinho, R.A., and Cantley, L.C. (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101, 3329–3335.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Shi, L.Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D.R., and Chi, H. (2011). HIF1a-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208, 1367–1376.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Shi, Q., Yin, Z., Liu, P., Zhao, B., Zhang, Z., Mao, S., Wei, T., Rao, M., Zhang, L., and Wang, S. (2016). Cilostazol suppresses IL-23 production in human dendritic cells via an AMPK-dependent pathway. Cell Physiol Biochem 40, 499–508.PubMedCrossRefGoogle Scholar
  79. Son, H.J., Lee, J., Lee, S.Y., Kim, E.K., Park, M.J., Kim, K.W., Park, S.H., and Cho, M.L. (2014). Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediators Inflamm 2014, 1–13.CrossRefGoogle Scholar
  80. Soraya, H., Rameshrad, M., Mokarizadeh, A., and Garjani, A. (2015). Metformin attenuates myocardial remodeling and neutrophil recruitment after myocardial infarction in rat. Bioimpacts 5, 3–8.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Stefanelli, C., Stanic’, I., Bonavita, F., Flamigni, F., Pignatti, C., Guarnieri, C., and Caldarera, C.M. (1998). Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cellpermeable activator of AMP-activated protein kinase. Biochem Biophys Res Commun 243, 821–826.PubMedCrossRefGoogle Scholar
  82. Stout, R.D., and Suttles, J. (2004). Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukocyte Biol 76, 509–513.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Stuart, L.M., and Ezekowitz, R.A. (2008). Phagocytosis and comparative innate immunity: learning on the fly. Nat Rev Immunol 8, 131–141.PubMedCrossRefGoogle Scholar
  84. Swirski, F.K., Nahrendorf, M., Etzrodt, M., Wildgruber, M., Cortez-Retamozo, V., Panizzi, P., Figueiredo, J.L., Kohler, R.H., Chudnovskiy, A., Waterman, P., Aikawa, E., Mempel, T.R., Libby, P., Weissleder, R., and Pittet, M.J. (2009). Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Tadie, J.M., Bae, H.B., Deshane, J.S., Bell, C.P., Lazarowski, E.R., Chaplin, D.D., Thannickal, V.J., Abraham, E., and Zmijewski, J.W. (2012). Toll-like receptor 4 engagement inhibits adenosine 5′-monophosphateactivated protein kinase activation through a high mobility group box 1 protein-dependent mechanism. Mol Med 18, 1–668.CrossRefGoogle Scholar
  86. Tamás, P., Hawley, S.A., Clarke, R.G., Mustard, K.J., Green, K., Hardie, D.G., and Cantrell, D.A. (2006). Regulation of the energy sensor AMPactivated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203, 1665–1670.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Tamás, P., Macintyre, A., Finlay, D., Clarke, R., Feijoo-Carnero, C., Ashworth, A., and Cantrell, D. (2010). LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells. Eur J Immunol 40, 242–253.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Tang, Q., Wu, J.J., Zheng, F., Hann, S.S., and Chen, Y.Q. (2017). Emodin increases expression of insulin-like growth factor binding protein 1 through activation of MEK/ERK/AMPKa and interaction of PPAR? and Sp1 in lung cancer. Cell Physiol Biochem 41, 339–357.PubMedCrossRefGoogle Scholar
  89. Trikha, P., Plews, R.L., Stiff, A., Gautam, S., Hsu, V., Abood, D., Wesolowski, R., Landi, I., Mo, X., Phay, J., Chen, C.S., Byrd, J., Caligiuri, M., Tridandapani, S., and Carson Iii, W.E. (2016). Targeting myeloid-derived suppressor cells using a novel adenosine monophosphate- activated protein kinase (AMPK) activator. Oncoimmunology 5, e1214787.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Tsai, K.L., Hung, C.H., Chan, S.H., Shih, J.Y., Cheng, Y.H., Tsai, Y.J., Lin, H.C., and Chu, P.M. (2016). Baicalein protects against oxLDL-caused oxidative stress and inflammation by modulation of AMPK-alpha. Oncotarget 7, 72458–72468.PubMedPubMedCentralGoogle Scholar
  91. Vasamsetti, S.B., Karnewar, S., Kanugula, A.K., Thatipalli, A.R., Kumar, J.M., and Kotamraju, S. (2015). Metformin inhibits monocyte- to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes 64, 2028–2041.PubMedCrossRefGoogle Scholar
  92. Wang, J., Ma, A., Zhao, M., and Zhu, H. (2017). AMPK activation reduces the number of atheromata macrophages in ApoE deficient mice. Atherosclerosis 258, 97–107.PubMedCrossRefGoogle Scholar
  93. Wang, R., and Green, D.R. (2012). Metabolic checkpoints in activated T cells. Nat Immunol 13, 907–915.PubMedCrossRefGoogle Scholar
  94. Woods, A., Cheung, P.C., Smith, F.C., Davison, M.D., Scott, J., Beri, R.K., and Carling, D. (1996a). Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro. J Biol Chem 271, 10282–10290.PubMedGoogle Scholar
  95. Woods, A., Johnstone, S.R., Dickerson, K., Leiper, F.C., Fryer, L.G.D., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., and Carling, D. (2003). LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13, 2004–2008.PubMedCrossRefGoogle Scholar
  96. Woods, A., Salt, I., Scott, J., Hardie, D.G., and Carling, D. (1996b). The a1 and a2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett 397, 347–351.PubMedCrossRefGoogle Scholar
  97. Wu, Y.H., Li, Q., Li, P., and Liu, B. (2016). GSK621 activates AMPK signaling to inhibit LPS-induced TNFa production. Biochem Biophys Res Commun 480, 289–295.PubMedCrossRefGoogle Scholar
  98. Xiao, B., Heath, R., Saiu, P., Leiper, F.C., Leone, P., Jing, C., Walker, P.A., Haire, L., Eccleston, J.F., Davis, C.T., Martin, S.R., Carling, D., and Gamblin, S.J. (2007). Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496–500.PubMedCrossRefGoogle Scholar
  99. Yan, H., Zhou, H.F., Hu, Y., and Pham, C.T. (2015). Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. J Rheum Dis Treat 1, 5.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Yang, Z., Kahn, B.B., Shi, H., and Xue, B.Z. (2010). Macrophage a1 AMPactivated protein kinase (a1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem 285, 19051–19059.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zha, Q.B., Wei, H.X., Li, C.G., Liang, Y.D., Xu, L.H., Bai, W.J., Pan, H., He, X.H., and Ouyang, D.Y. (2016). ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Front Immunol 7, 597.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Zhan, P., Zhao, S., Yan, H., Yin, C., Xiao, Y., Wang, Y., Ni, R., Chen, W., Wei, G., and Zhang, P. (2016). alpha-enolase promotes tumorigenesis and metastasis via regulating AMPK/mTOR pathway in colorectal cancer. Mol Carcinog 56, 1427–1437.CrossRefGoogle Scholar
  103. Zhang, M., Zhu, H., Ding, Y., Liu, Z., Cai, Z., and Zou, M.H. (2017). AMP-activated protein kinase a1 promotes atherogenesis by increasing monocyte-to-macrophage differentiation. J Biol Chem 292, 7888–7903.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhang, N., Hartig, H., Dzhagalov, I., Draper, D., and He, Y.W. (2005). The role of apoptosis in the development and function of T lymphocytes. Cell Res 15, 749–769.PubMedCrossRefGoogle Scholar
  105. Zhao, D., Long, X.D., Lu, T.F., Wang, T., Zhang, W.W., Liu, Y.X., Cui, X.L., Dai, H.J., Xue, F., and Xia, Q. (2015). Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int J Cancer 136, 2556–2565.PubMedCrossRefGoogle Scholar
  106. Zhao, X., Zmijewski, J.W., Lorne, E., Liu, G., Park, Y.J., Tsuruta, Y., and Abraham, E. (2008). Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. AJPLung Cell Mol Physiol 295, L497–L504.CrossRefGoogle Scholar
  107. Zhou, J., Yang, Z., Tsuji, T., Gong, J., Xie, J., Chen, C., Li, W., Amar, S., and Luo, Z. (2011). LITAF and TNFSF15, two downstream targets of AMPK, exert inhibitory effects on tumor growth. Oncogene 30, 1892–1900.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zou, Y.F., Xie, C.W., Yang, S.X., and Xiong, J.P. (2017). AMPK activators suppress breast cancer cell growth by inhibiting DVL3-facilitated Wnt/β-catenin signaling pathway activity. Mol Med Rep 15, 899–907.PubMedCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Modern Research Center for Traditional Chinese MedicineShanxi UniversityTaiyuanChina
  2. 2.State Key Laboratory for Bioactive Substances and Functions of Natural MedicinesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
  3. 3.Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
  4. 4.Institute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina

Personalised recommendations