Skip to main content
Log in

Centromere pairing precedes meiotic chromosome pairing in plants

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Meiosis is a specialized eukaryotic cell division, in which diploid cells undergo a single round of DNA replication and two rounds of nuclear division to produce haploid gametes. In most eukaryotes, the core events of meiotic prophase I are chromosomal pairing, synapsis and recombination. To ensure accurate chromosomal segregation, homologs have to identify and align along each other at the onset of meiosis. Although much progress has been made in elucidating meiotic processes, information on the mechanisms underlying chromosome pairing is limited in contrast to the meiotic recombination and synapsis events. Recent research in many organisms indicated that centromere interactions during early meiotic prophase facilitate homologous chromosome pairing, and functional centromere is a prerequisite for centromere pairing such as in maize. Here, we summarize the recent achievements of chromosome pairing research on plants and other organisms, and outline centromere interactions, nuclear chromosome orientation, and meiotic cohesin, as main determinants of chromosome pairing in early meiotic prophase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, S.J., Franklin, F.C., and Jones, G.H. (2001). Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114, 4207–4217.

    CAS  PubMed  Google Scholar 

  • Bass, H.W., Marshall, W.F., Sedat, J.W., Agard, D.A., and Cande, W.Z. (1997). Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137, 5–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass, H.W. (2003). Telomere dynamics unique to meiotic prophase: formation and significance of the bouquet. Cell Mol Life Sci 60, 2319–2324.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, M.D. (1979). Centromere arrangement in Triticum aestivum and their relationship to synapsis. Heredity 43, 157.

    Google Scholar 

  • Bisig, C.G., Guiraldelli, M.F., Kouznetsova, A., Scherthan, H., Höög, C., Dawson, D.S., and Pezza, R.J. (2012). Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes. PLOS Genet 8, e1002701.

    Article  Google Scholar 

  • Biswas, U., Wetzker, C., Lange, J., Christodoulou, E.G., Seifert, M., Beyer, A., and Jeßsberger, R. (2013). Meiotic cohesin SMC1ß provides prophase I centromeric cohesion and is required for multiple synapsis-associated functions. PLoS Genet 9, e1003985.

    Article  Google Scholar 

  • Bozza, C.G., and Pawlowski, W.P. (2014). The cytogenetics of homologous chromosome pairing in meiosis in plants. Cytogenet Genome Res 120, 313–319.

    Article  Google Scholar 

  • Cai, X., Dong, F., Edelmann, R.E., and Makaroff, C.A. (2003). The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci 116, 2999–3007.

    Article  CAS  PubMed  Google Scholar 

  • Chelysheva, L., Diallo, S., Vezon, D., Gendrot, G., Vrielynck, N., Belcram, K., Rocques, N., Márquez-Lema, A., Bhatt, A.M., Horlow, C., Mercier, R., Mézard, C., and Grelon, M. (2005). AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 118, 4621–4632.

    Article  CAS  PubMed  Google Scholar 

  • Church, K., and Moens, P.B. (1976). Centromere behavior during interphase and meiotic prophase in Allium fistulosum from 3-D, E.M. reconstruction. Chromosoma 56, 249–263.

    Article  Google Scholar 

  • Da Ines, O., Abe, K., Goubely, C., Gallego, M.E., and White, C.I. (2012). Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana. PLoS Genet 8, e1002636.

    Article  Google Scholar 

  • Da Ines, O., Gallego, M.E., and White, C.I. (2014). Recombination-independent mechanisms and pairing of homologous chromosomes during meiosis in plants. Mol Plant 7, 492–501.

    Article  PubMed  Google Scholar 

  • Da Ines, O., and White, C.I. (2015). Centromere associations in meiotic chromosome pairing. Annu Rev Genet 49, 95–114.

    Article  PubMed  Google Scholar 

  • Ding, D.Q., Yamamoto, A., Haraguchi, T., and Hiraoka, Y. (2004). Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev Cell 6, 329–341.

    Article  CAS  PubMed  Google Scholar 

  • Ding, D.Q., Matsuda, A., Okamasa, K., Nagahama, Y., Haraguchi, T., and Hiraoka, Y. (2016). Meiotic cohesin-based chromosome structure is esential for homologous chromosome pairing in schizosacharomyces pombe. Chromosoma 125, 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Ding, X., Xu, R., Yu, J., Xu, T., Zhuang, Y., and Han, M. (2007). SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell 12, 863–872.

    Article  CAS  PubMed  Google Scholar 

  • Feng, C., Liu, Y.L., Su, H.D., Wang, H.F., Birchler, J., and Han, F.P. (2015). Recent advances in plant centromere biology. Sci China Life Sci 58, 240–245.

    Article  PubMed  Google Scholar 

  • Golubovskaya, I.N., Hamant, O., Timofejeva, L., Wang, C.J.R., Braun, D., Meeley, R., and Cande, W.Z. (2006). Alleles of afd1 dissect REC8 functions during meiotic prophase I. J Cell Sci 119, 3306–3315.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, S., Sharp, R., Foote, T.N., Bertin, I., Wanous, M., Reader, S., Colas, I., and Moore, G. (2006). Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752.

    Article  CAS  PubMed  Google Scholar 

  • Han, F., Lamb, J.C., Yu, W., Gao, Z., and Birchler, J.A. (2007). Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell 19, 524–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper, L., Golubovskaya, I., and Cande, W.Z. (2004). A bouquet of chromosomes. J Cell Sci 117, 4025–4032.

    Article  CAS  PubMed  Google Scholar 

  • Hassold, T.J., and Jacobs, P.A. (1984). Trisomy in man. Annu Rev Genet 18, 69–97.

    Article  CAS  PubMed  Google Scholar 

  • Hirano, T. (2006). At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol 7, 311–322.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, J., Hwang, G., Jacob, J., Sapp, N., Bedigian, R., Oka, K., Overbeek, P., Murray, S., and Jordan, P.W. (2014). Meiosis-specific cohesin component, stag3 is essential for maintaining centromere chromatid cohesion, and required for DNA repair and synapsis between homologous chromosomes. PLoS Genet 10, e1004413.

    Article  Google Scholar 

  • Ishiguro, K., Kim, J., Fujiyama-Nakamura, S., Kato, S., and Watanabe, Y. (2011). A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep 12, 267–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain, D., and Cooper, J.P. (2010). Telomeric strategies: means to an end. Annu Rev Genet 44, 243–269.

    Article  CAS  PubMed  Google Scholar 

  • Kemp, B., Boumil, R.M., Stewart, M.N., and Dawson, D.S. (2004). A role for centromere pairing in meiotic chromosome segregation. Gene Dev 18, 1946–1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Perez, E., Shaw, P., Reader, S., Aragon, A.L., Miller, T., and Moore, G. (1999). Homologous chromosome pairing in wheat. J Cell Sci 112, 1761–1769.

    CAS  PubMed  Google Scholar 

  • Martinez-Perez, E., Shaw, P., and Moore, G. (2001). The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411, 204–207.

    Article  CAS  PubMed  Google Scholar 

  • Moore, G., and Shaw, P. (2009). Improving the chances of finding the right partner. Curr Opin Gene Dev 19, 99–104.

    Article  CAS  Google Scholar 

  • Nasmyth, K., and Haering, C.H. (2005). The structure and function of smc and kleisin complexes. Annu Rev Biochem 74, 595–648.

    Article  CAS  PubMed  Google Scholar 

  • Nasmyth, K., and Haering, C.H. (2009). Cohesin: its roles and mechanisms. Annu Rev Genet 43, 525–558.

    Article  CAS  PubMed  Google Scholar 

  • Nasmyth, K. (2011). Cohesin: a catenase with separate and exit gates? Nat Cell Biol 13, 1170–1177.

  • Niwa, O., Shimanuki, M., and Miki, F. (2000). Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis.

  • EMBO J 19, 3831–3840.

  • Penfold, C.A., Brown, P.E., Lawrence, N.D., and Goldman, A.S.H. (2012). Modeling meiotic chromosomes indicates a size dependent contribution of telomere clustering and chromosome rigidity to homologue juxtaposition. PLoS Comput Biol 8, e1002496.

    Article  Google Scholar 

  • Phillips, D., Nibau, C., Wnetrzak, J., and Jenkins, G. (2012). High resolution analysis of meiotic chromosome structure and behaviour in barley (Hordeum vulgare L.). PLoS ONE 7, e39539.

    Article  Google Scholar 

  • Rabl, C. (1885). Uber Zellteilung. Morphol Jahrb 10, 214–330.

    Google Scholar 

  • Roberts, N.Y., Osman, K., Franklin, F.C., Pradillo, M., Varas, J., Santos, J.L., and Armstrong, S. (2013). Telomeres in plant meiosis: their structure, dynamics and fuction. Annu Plant Rev 46, 191–228.

    Article  CAS  Google Scholar 

  • Ronceret, A., Doutriaux, M.P., Golubovskaya, I.N., and Pawlowski, W.P. (2009). PHS1 regulates meiotic recombination and homologous chromosome pairing by controlling the transport of RAD50 to the nucleus. Proc Natl Acad Sci USA 106, 20121–20126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherthan, H., Bahler, J., and Kohli, J. (1994). Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast. J Cell Biol 127, 273–285.

    Article  CAS  PubMed  Google Scholar 

  • Scherthan, H. (2007). Telomeres and meiosis in health and disease. Cell Mol Life Sci 64, 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Schleiffer, A., Kaitna, S., Maurer-Stroh, S., Glotzer, M., Nasmyth, K., and Eisenhaber, F. (2003). Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol Cell 11, 571–575.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, M.N., and Dawson, D.S. (2008). Changing partners: moving from non-homologous to homologous centromere pairing in meiosis. Trends Genet 24, 564–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeo, S., Lake, C.M., Morais-de-Sá, E., Sunkel, C.E., and Hawley, R.S. (2011). Synaptonemal complex-dependent centromeric clustering and the initiation of synapsis in Drosophila oocytes. Curr Biol 21, 1845–1851.

    Article  CAS  PubMed  Google Scholar 

  • Tiang, C.L., He, Y., and Pawlowski, W.P. (2012). Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants. Plant Physiol 158, 26–34.

    Article  CAS  PubMed  Google Scholar 

  • Tsubouchi, T., and Roeder, G.S. (2005). A synaptonemal complex protein promotes homology-independent centromere coupling. Science 308, 870–873.

    Article  CAS  PubMed  Google Scholar 

  • Tsubouchi, T., Macqueen, A.J., and Roeder, G.S. (2008). Initiation of meiotic chromosome synapsis at centromeres in budding yeast. Gene Dev 22, 3217–3226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlmann, F. (2003). Chromosome cohesion and separation: from men and molecules. Curr Biol 13, R104–R114.

    Article  CAS  PubMed  Google Scholar 

  • Unhavaithaya, Y., and Orr-Weaver, T.L. (2013). Centromere proteins CENP-C and CAL1 functionally interact in meiosis for centromere clustering, pairing, and chromosome segregation. Proc Natl Acad Sci USA 110, 19878–19883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, Y., and Nurse, P. (1999). Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, Y. (2004). Modifying sister chromatid cohesion for meiosis. J Cell Sci 117, 4017–4023.

    Article  CAS  PubMed  Google Scholar 

  • Wen, R., Moore, G., and Shaw, P.J. (2012). Centromeres cluster de novo at the beginning of meiosis in Brachypodium distachyon. PLoS ONE 7, e44681.

    Article  Google Scholar 

  • Xu, H., Beasley, M.D., Warren, W.D., van der Horst, G.T.J., and McKay, M.J. (2005). Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 8, 949–961.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Pawlowski, W.P., and Han, F. (2013). Centromere pairing in early meiotic prophase requires active centromeres and precedes installation of the synaptonemal complex in maize. Plant Cell 25, 3900–3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Zhang, B., Su, H., Birchler, J.A., and Han, F. (2014). Molecular mechanisms of homologous chromosome pairing and segregation in plants. J Genet Genomics 41, 117–123.

    Article  PubMed  Google Scholar 

  • Zickler, D., and Kleckner, N. (1999). Meiotic chromosomes: integrating structure and fuction. Annu Rev Genet 32, 603–754.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Ingo Schubert for comments and suggestions. This work was supported by the National Natural Science Foundation of China (31600994, 31630049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangpu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Han, F. Centromere pairing precedes meiotic chromosome pairing in plants. Sci. China Life Sci. 60, 1197–1202 (2017). https://doi.org/10.1007/s11427-017-9109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9109-y

Keywords

Navigation