Skip to main content
Log in

Initial gut microbiota structure affects sensitivity to DSS-induced colitis in a mouse model

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The dextran sulfate sodium (DSS)-induced colitis model is a widely applied mouse model, but controversial results have been obtained from experiments using the same mouse strain under the same conditions. Because the gut microbiota play an important role in DSS-induced colitis, it is essential to evaluate the influence of the initial gut microbiota in this model. Here, we identified significant variations in the initial gut microbiota of different batches of mice and found that the initial intestinal microbiota had a profound influence on DSS-induced colitis. We performed three independent trials using the same C57BL/6J mouse model with DSS treatment and used high-throughput 16S rRNA gene sequencing to analyze the gut microbiota. We found that the structure and composition of the gut microbiota in mice with severe colitis, as compared with mice with milder colon damage, had unique features, such as an increase in Akkermansia bacteria and a decrease in Barnesiella spp. Moreover, these varied gut bacteria in the different trials also showed different responses to DSS treatment. Our work suggests that, in studies using mouse models, the gut microbiota must be considered when examining mechanisms of diseases, to ensure that comparable results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, C., Duewell, P., Mayer, C., Lehr, H.A., Fitzgerald, K.A., Dauer, M., Tschopp, J., Endres, S., Latz, E., and Schnurr, M. (2010). Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59, 1192–1199.

    Article  PubMed  CAS  Google Scholar 

  • Berry, D., and Widder, S.(2014). Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5, 219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Meth 7, 335–336.

    Article  CAS  Google Scholar 

  • Chassaing, B., Srinivasan, G., Delgado, M.A., Young, A.N., Gewirtz, A.T., and Vijay-Kumar, M. (2012). Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation. PLoS ONE 7, e44328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins, F.S., and Tabak, L.A. (2014). Policy: NIH plans to enhance reproducibility. Nature 505, 612–613.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elinav, E., Strowig, T., Kau, A.L., Henao-Mejia, J., Thaiss, C.A., Booth, C.J., Peaper, D.R., Bertin, J., Eisenbarth, S.C., Gordon, J.I., and Flavell, R.A. (2011). NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Endesfelder, D., zu Castell, W., Ardissone, A., Davis-Richardson, A.G., Achenbach, P., Hagen, M., Pflueger, M., Gano, K.A., Fagen, J.R., Drew, J.C., Brown, C.T., Kolaczkowski, B., Atkinson, M., Schatz, D., Bonifacio, E., Triplett, E.W., and Ziegler, A.G. (2014). Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 63, 2006–2014.

    Article  PubMed  CAS  Google Scholar 

  • Estrada, E., and Rodríguez-Velázquez, J.A. (2005). Subgraph centrality in complex networks. Phys Rev E 71, 056103.

    Article  CAS  Google Scholar 

  • Fayad, R., Pini, M., Sennello, J.A., Cabay, R.J., Chan, L., Xu, A., and Fantuzzi, G. (2007). Adiponectin deficiency protects mice from chemically induced colonic inflammation. Gastroenterology 132, 601–614.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, L.C. (1977). A set of measures of centrality based on betweenness. Sociometry 40, 35–41.

    Article  Google Scholar 

  • Friedman, J., and Alm, E.J. (2012). Inferring correlation networks from genomic survey data. PLoS Comput Biol 8, e1002687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godon, J.J., Zumstein, E., Dabert, P., Habouzit, F., and Moletta, R. (1997). Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63, 2802–2813.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Håkansson, Å., Tormo-Badia, N., Baridi, A., Xu, J., Molin, G., Hagslätt, M.L., Karlsson, C., Jeppsson, B., Cilio, C.M., and Ahrné, S. (2015). Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice. Clin Exp Med 15, 107–120.

    Article  PubMed  CAS  Google Scholar 

  • Heimesaat, M.M., Fischer, A., Siegmund, B., Kupz, A., Niebergall, J., Fuchs, D., Jahn, H.K., Freudenberg, M., Loddenkemper, C., Batra, A., Lehr, H.A., Liesenfeld, O., Blaut, M., Göbel, U.B., Schumann, R.R., and Bereswill, S. (2007). Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via toll-like receptors 2 and 4. PLoS ONE 2, e662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernandez-Chirlaque, C., Aranda, C.J., Ocon, B., Capitan-Canadas, F., Ortega-Gonzalez, M., Carrero, J.J., Suarez, M.D., Zarzuelo, A., Sanchez de Medina, F., and Martinez-Augustin, O. (2016). Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. J Crohns Colitis 10, 1324–1335.

    Article  PubMed  Google Scholar 

  • Justice, M.J., and Dhillon, P. (2016). Using the mouse to model human disease: increasing validity and reproducibility. Dis Model Mech 9, 101–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam, Y.Y., Ha, C.W.Y., Campbell, C.R., Mitchell, A.J., Dinudom, A., Oscarsson, J., Cook, D.I., Hunt, N.H., Caterson, I.D., Holmes, A.J., and Storlien, L.H. (2012). Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE 7, e34233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macleod, M. (2011). Why animal research needs to improve. Nature 477, 511–511.

    Article  PubMed  CAS  Google Scholar 

  • McGonigle, P., and Ruggeri, B. (2014). Animal models of human disease: challenges in enabling translation. Biochem Pharmacol 87, 162–171.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi, A. (2012). Animal models of inflammatory bowel disease. Prog Mol Biol Transl Sci 105, 263–320.

    Article  PubMed  CAS  Google Scholar 

  • Nagalingam, N.A., Kao, J.Y., and Young, V.B. (2011). Microbial ecology of the murine gut associated with the development of dextran sodium sulfate-induced colitis. Inflamm Bowel Diss 17, 917–926.

    Article  Google Scholar 

  • Naqvi, A., Rangwala, H., Keshavarzian, A., and Gillevet, P. (2010). Network-based modeling of the human gut microbiome. Chem Biodiver 7, 1040–1050.

    Article  CAS  Google Scholar 

  • Nguyen, T.L., Vieira-Silva, S., Liston, A., and Raes, J. (2015). How informative is the mouse for human gut microbiota research? Dis Model Mech 8, 1–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishihara, T., Matsuda, M., Araki, H., Oshima, K., Kihara, S., Funahashi, T., and Shimomura, I. (2006). Effect of adiponectin on murine colitis induced by dextran sulfate sodium. Gastroenterology 131, 853–861.

    Article  PubMed  CAS  Google Scholar 

  • Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y., and Nakaya, R. (1990). A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694–702.

    Article  PubMed  CAS  Google Scholar 

  • Prinz, F., Schlange, T., and Asadullah, K. (2011). Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov 10, 712.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siegmund, B., Lehr, H.A., Fantuzzi, G., and Dinarello, C.A. (2001). IL-1beta-converting enzyme (caspase-1) in intestinal inflammation. Proc Natl Acad Sci USA 98, 13249–13254.

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar, P.V., Westrich, G.M., Kanaly, S., Garka, K., Born, T.L., Derry, J.M., and Viney, J.L. (2002). Interleukin 18 is a primary mediator of the inflammation associated with dextran sulphate sodium induced colitis: blocking interleukin 18 attenuates intestinal damage. Gut 50, 812–820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takagi, H., Kanai, T., Okazawa, A., Kishi, Y., Sato, T., Takaishi, H., Inoue, N., Ogata, H., Iwao, Y., Hoshino, K., Takeda, K., Akira, S., Watanabe, M., Ishii, H., and Hibi, T. (2003). Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice. Scand J Gastroenterol 38, 837–844.

    Article  PubMed  CAS  Google Scholar 

  • ter Braak, C.J.F., and Smilauer, P.J. (1988). CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4). (Texas Willis: Microcomputer Power), pp. 352.

    Google Scholar 

  • Weiss, G.A., Chassard, C., and Hennet, T. (2014). Selective proliferation of intestinal Barnesiella under fucosyllactose supplementation in mice. Br J Nutr 111, 1602–1610.

    Article  PubMed  CAS  Google Scholar 

  • Zaki, M.H., Boyd, K.L., Vogel, P., Kastan, M.B., Lamkanfi, M., and Kanneganti, T.D. (2010). The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Q., Wu, Y., Wang, J., Wu, G., Long, W., Xue, Z., Wang, L., Zhang, X., Pang, X., Zhao, Y., Zhao, L., and Zhang, C. (2016). Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium. Sci Rep 6, 27572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81401141), and Science and Technology Commission of Shanghai Municipality (14YF1402200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenhong Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wu, Y., Hu, Y. et al. Initial gut microbiota structure affects sensitivity to DSS-induced colitis in a mouse model. Sci. China Life Sci. 61, 762–769 (2018). https://doi.org/10.1007/s11427-017-9097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9097-0

Keywords

Navigation