Skip to main content
Log in

MXR7 facilitates liver cancer metastasis via epithelial-mesenchymal transition

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

MXR7 is a cell-surface protein and highly expressed in hepatocellular carcinoma (HCC). The aim of this study is to determine the expression profile of MXR7 in HCC and investigate the influence of MXR7 on invasion and metastasis of HCC cells. For this purpose, immunohistochemical assay was used to identify the differential expression of MXR7 in 94 HCC specimens. Expression of MXR7 in 4 pairs of HCC and portal vein tumor thrombus (PVTT) was also tested. The motility of HCC cells were characterized by transwell migration and matrigel invasion assays. In vivo metastasis potential was determined via tail vein injection assay. Moreover, compared with noninvasive HCC tumors or human HCC cell lines with low metastatic potential, invasive HCC samples and HCC cell lines with high metastatic potential exhibited higher MXR7 expression. Furthermore, forced expression of MXR7 in SMMC-7721 promoted cell proliferation, migration and invasion in vitro and accelerated tumor growth and metastasis in vivo. Conversely, knockdown of MXR7 expression in HuH7 cells inhibited proliferation and motility of cells. Mechanically, overexpression of MXR7 promoted epithelial-mesenchymal transition (EMT) progress, and MXR7 depletion repressed the EMT phenotype. In conclusion, MXR7 is a mediator of EMT and metastasis in HCC and may serve as a novel therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Block, T.M., Marrero, J., Gish, R.G., Sherman, M., London, W.T., Srivastava, S., and Wagner, P.D. (2008). The degree of readiness of selected biomarkers for the early detection of hepatocellular carcinoma: notes from a recent workshop. Cancer Biomark 4, 19–33.

    Article  CAS  PubMed  Google Scholar 

  • Capurro, M., Wanless, I.R., Sherman, M., Deboer, G., Shi, W., Miyoshi, E., and Filmus, J. (2003). Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 125, 89–97.

    Article  CAS  PubMed  Google Scholar 

  • Capurro, M.I., Xiang, Y.Y., Lobe, C., and Filmus, J. (2005). Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res 65, 6245–6254.

    Article  CAS  PubMed  Google Scholar 

  • Cervantes-Arias, A., Pang, L.Y., and Argyle, D.J. (2013). Epithelial-mesenchymal transition as a fundamental mechanism underlying the cancer phenotype. Vet Comp Oncol 11, 169–184.

    Article  CAS  PubMed  Google Scholar 

  • Chen, T.A., Wang, J.L., Hung, S.W., Chu, C.L., Cheng, Y.C., and Liang, S.M. (2011). Recombinant VP1, an Akt inhibitor, suppresses progression of hepatocellular carcinoma by inducing apoptosis and modulation of CCL2 production. PLoS ONE 6, e23317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W., Zhang, Y.W., Li, Y., Zhang, J.W., Zhang, T., Fu, B.S., Zhang, Q., and Jiang, N. (2016). Constitutive expression of Wnt/betacatenin target genes promotes proliferation and invasion of liver cancer stem cells. Mol Med Rep 13, 3466–3474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang, D.Y., Villanueva, A., Hoshida, Y., Peix, J., Newell, P., Minguez, B., LeBlanc, A.C., Donovan, D.J., Thung, S.N., Solé, M., Tovar, V., Alsinet, C., Ramos, A.H., Barretina, J., Roayaie, S., Schwartz, M., Waxman, S., Bruix, J., Mazzaferro, V., Ligon, A.H., Najfeld, V., Friedman, S.L., Sellers, W.R., Meyerson, M., and Llovet, J.M. (2008). Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 68, 6779–6788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Tommaso, L., Destro, A., Seok, J.Y., Balladore, E., Terracciano, L., Sangiovanni, A., Iavarone, M., Colombo, M., Jang, J.J., Yu, E., Jin, S.Y., Morenghi, E., Park, Y.N., and Roncalli, M. (2009). The application of markers (HSP70 GPC3 and GS) in liver biopsies is useful for detection of hepatocellular carcinoma. J Hepatol 50, 746–754.

    Article  PubMed  Google Scholar 

  • Du, J.L., Wei, L.X., and Wang, Y.L. (2011). Expression and clinicopathologic significance of GPC3 and other antibodies in well-differentiated hepatocellular carcinoma (in Chinese). Chin J Pathol 40, 11-16.

    CAS  Google Scholar 

  • Farooq, M., Hwang, S.Y., Park, M.K., Kim, J.C., Kim, M.K., and Sung, Y.K. (2003). Blocking endogenous glypican-3 expression releases Hep 3B cells from G1 arrest. Mol Cells 15, 356–360.

    CAS  PubMed  Google Scholar 

  • Feng, M., Gao, W., Wang, R., Chen, W., Man, Y.G., Figg, W.D., Wang, X.W., Dimitrov, D.S., and Ho, M. (2013). Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc Natl Acad Sci USA 110, E1083–E1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filmus, J., and Capurro, M. (2013). Glypican-3: a marker and a therapeutic target in hepatocellular carcinoma. FEBS J 280, 2471–2476.

    Article  CAS  PubMed  Google Scholar 

  • Filmus, J., and Selleck, S.B. (2001). Glypicans: proteoglycans with a surprise. J Clin Invest 108, 497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzmaurice, C., Dicker, D., Pain, A., Hamavid, H., Moradi-Lakeh, M., MacIntyre, M.F., Allen, C., Hansen, G., Woodbrook, R., Wolfe, C., Hamadeh, R.R., Moore, A., Werdecker, A., Gessner, B.D., Te Ao, B., McMahon, B., Karimkhani, C., Yu, C., Cooke, G.S., Schwebel, D.C., Carpenter, D.O., Pereira, D.M., Nash, D., Kazi, D.S., De Leo, D., Plass, D., Ukwaja, K.N., Thurston, G.D., Yun Jin, K., Simard, E.P., Mills, E., Park, E.K., Catalá-López, F., de Veber, G., Gotay, C., Khan, G., Hosgood, H.D., Santos, I.S., Leasher, J.L., Singh, J., Leigh, J., Jonas, J.B., Jonas, J., Sanabria, J., Beardsley, J., Jacobsen, K.H., Takahashi, K., Franklin, R.C., Ronfani, L., Montico, M., Naldi, L., Tonelli, M., Geleijnse, J., Petzold, M., Shrime, M.G., Younis, M., Yonemoto, N., Breitborde, N., Yip, P., Pourmalek, F., Lotufo, P.A., Esteghamati, A., Hankey, G.J., Ali, R., Lunevicius, R., Malekzadeh, R., Dellavalle, R., Weintraub, R., Lucas, R., Hay, R., Rojas-Rueda, D., Westerman, R., Sepanlou, S.G., Nolte, S., Patten, S., Weichenthal, S., Abera, S.F., Fereshtehnejad, S.M., Shiue, I., Driscoll, T., Vasankari, T., Alsharif, U., Rahimi-Movaghar, V., Vlassov, V.V., Marcenes, W.S., Mekonnen, W., Melaku, Y.A., Yano, Y., Artaman, A., Campos, I., MacLachlan, J., Mueller, U., Kim, D., Trillini, M., Eshrati, B., Williams, H.C., Shibuya, K., Dandona, R., Murthy, K., Cowie, B., Amare, A.T., Antonio, C.A., Castañeda-Orjuela, C., van Gool, C.H., Violante, F., Oh, I.H., Deribe, K., Soreide, K., Knibbs, L., Kereselidze, M., Green, M., Cardenas, R., Roy, N., Tillmann, T., Tillman, T., Li, Y., Krueger, H., Monasta, L., Dey, S., Sheikhbahaei, S., Hafezi-Nejad, N., Kumar, G.A., Sreeramareddy, C.T., Dandona, L., Wang, H., Vollset, S.E., Mokdad, A., Salomon, J.A., Lozano, R., Vos, T., Forouzanfar, M., Lopez, A., Murray, C., and Naghavi, M. (2015). The global burden of cancer 2013. JAMA Oncol 1, 505–527.

    Article  PubMed  Google Scholar 

  • Gao, H., Li, K., Tu, H., Pan, X., Jiang, H., Shi, B., Kong, J., Wang, H., Yang, S., Gu, J., and Li, Z. (2014a). Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 20, 6418–6428.

    Article  CAS  PubMed  Google Scholar 

  • Gao, W., Kim, H., Feng, M., Phung, Y., Xavier, C.P., Rubin, J.S., and Ho, M. (2014b). Inactivation of Wnt signaling by a human antibody that recognizes the heparan sulfate chains of glypican-3 for liver cancer therapy. Hepatology 60, 576–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, Y., Zhang, W., Han, X., Li, F., Wang, X., Wang, R., Fang, Z., Tong, X., Yao, S., Li, F., Feng, Y., Sun, Y., Hou, Y., Yang, Z., Guan, K., Chen, H., Zhang, L., and Ji, H. (2014c). YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression. Nat Commun 5, 4629.

    CAS  PubMed  Google Scholar 

  • Grille, S.J., Bellacosa, A., Upson, J., Klein-Szanto, A.J., van Roy, F., Lee-Kwon, W., Donowitz, M., Tsichlis, P.N., and Larue, L. (2003). The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63, 2172–2178.

    CAS  PubMed  Google Scholar 

  • Guan, X. (2015). Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5, 402–418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, K., Pan, X., Bi, Y., Xu, W., Chen, C., Gao, H., Shi, B., Jiang, H., Yang, S., Jiang, L., and Li, Z. (2016). Adoptive immunotherapy using T lymphocytes redirected to glypican-3 for the treatment of lung squamous cell carcinoma. Oncotarget 7, 2496–2507.

    PubMed  Google Scholar 

  • Li, L., and Wang, H. (2016). Heterogeneity of liver cancer and personalized therapy. Cancer Lett 379, 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Chen, Z., Li, F., Wang, J., and Zhang, Z. (2012). Preparation and in vitro studies of MRI-specific superparamagnetic iron oxide antiGPC3 probe for hepatocellular carcinoma. Int J Nanomed 7, 4593–4611.

    CAS  Google Scholar 

  • Midorikawa, Y., Ishikawa, S., Iwanari, H., Imamura, T., Sakamoto, H., Miyazono, K., Kodama, T., Makuuchi, M., and Aburatani, H. (2003). Glypican-3, overexpressed in hepatocellular carcinoma, modulates FGF2 and BMP-7 signaling. Int J Cancer 103, 455–465.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, K., Orita, T., Nezu, J., Yoshino, T., Ohizumi, I., Sugimoto, M., Furugaki, K., Kinoshita, Y., Ishiguro, T., Hamakubo, T., Kodama, T., Aburatani, H., Yamada-Okabe, H., and Tsuchiya, M. (2009). Anti-glypican 3 antibodies cause ADCC against human hepatocellular carcinoma cells. Biochem Biophys Res Commun 378, 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Nakatsura, T., Yoshitake, Y., Senju, S., Monji, M., Komori, H., Motomura, Y., Hosaka, S., Beppu, T., Ishiko, T., Kamohara, H., Ashihara, H., Katagiri, T., Furukawa, Y., Fujiyama, S., Ogawa, M., Nakamura, Y., and Nishimura, Y. (2003). Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun 306, 16–25.

    Article  CAS  PubMed  Google Scholar 

  • Ning, S., Bin, C., Na, H., Peng, S., Yi, D., Xiang-hua, Y., Fang-yin, Z., Da-yong, Z., and Rong-cheng, L. (2012). Glypican-3, a novel prognostic marker of hepatocellular cancer, is related with postoperative metastasis and recurrence in hepatocellular cancer patients. Mol Biol Rep 39, 351–357.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, Y., Nakatsura, T., and Senju, S. (2008). Usefulness of a novel oncofetal antigen, glypican-3, for diagnosis and immunotherapy of hepatocellular carcinoma. Jpn J Clin Immunol 31, 383–391.

    Article  CAS  Google Scholar 

  • Qin, G., Luo, M., Chen, J., Dang, Y., Chen, G., Li, L., Zeng, J., Lu, Y., and Yang, J. (2016). Reciprocal activation between MMP-8 and TGF-β1 stimulates EMT and malignant progression of hepatocellular carcinoma. Cancer Lett 374, 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Sartorius, K., Sartorius, B., Aldous, C., Govender, P.S., and Madiba, T.E. (2015). Global and country underestimation of hepatocellular carcinoma (HCC) in 2012 and its implications. Cancer Epidemiol 39, 284–290.

    Article  CAS  PubMed  Google Scholar 

  • Sung, Y.K., Hwang, S.Y., Park, M.K., Farooq, M., Han, I.S., Bae, H.I., Kim, J.C., and Kim, M. (2003). Glypican-3 is overexpressed in human hepatocellular carcinoma. Cancer Sci 94, 259–262.

    Article  CAS  PubMed  Google Scholar 

  • Taddei, M.L., Giannoni, E., Comito, G., and Chiarugi, P. (2013). Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett 341, 80–96.

    Article  CAS  PubMed  Google Scholar 

  • Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015). Global cancer statistics, 2012. CA Cancer J Clin 65, 87–108.

    Article  PubMed  Google Scholar 

  • Wang, H., Zhang, C., Xu, L., Zang, K., Ning, Z., Jiang, F., Chi, H., Zhu, X., and Meng, Z. (2016). Bufalin suppresses hepatocellular carcinoma invasion and metastasis by targeting HIF-1alpha via the PI3K/AKT/mTOR pathway. Oncotarget 7, 20193–20208.

    PubMed  PubMed Central  Google Scholar 

  • Wurmbach, E., Chen, Y., Khitrov, G., Zhang, W., Roayaie, S., Schwartz, M., Fiel, I., Thung, S., Mazzaferro, V., Bruix, J., Bottinger, E., Friedman, S., Waxman, S., and Llovet, J.M. (2007). Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology 45, 938–947.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, W.K., Qi, C.Y., Chen, D., Li, S.Q., Fu, S.J., Peng, B.G., and Liang, L.J. (2014). Prognostic significance of glypican-3 in hepatocellular carcinoma: a meta-analysis. BMC Cancer 14, 104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, N., Okano, K., Kushida, Y., Deguchi, A., Yachida, S., and Suzuki, Y. (2014). Clinicopathology of recurrent hepatocellular carcinomas after radiofrequency ablation treated with salvage surgery. Hepatol Res 44, 1062–1071.

    Article  PubMed  Google Scholar 

  • Yang, J.D., Nakamura, I., and Roberts, L.R. (2011). The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol 21, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., Wang, C., Lin, Y., Liu, Q., Yu, L., Tang, L., Yan, H.X., Fu, J., Chen, Y., Zhang, H.L., Tang, L., Zheng, L.Y., He, Y.Q., Li, Y.Q., Wu, F.Q., Zou, S.S., Li, Z., Wu, M.C., Feng, G.S., and Wang, H.Y. (2012). OV6+ tumor-initiating cells contribute to tumor progression and invasion in human hepatocellular carcinoma. J Hepatol 57, 613–620.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., Yan, H.X., Chen, L., Liu, Q., He, Y.Q., Yu, L.X., Zhang, S.H., Huang, D.D., Tang, L., Kong, X.N., Chen, C., Liu, S.Q., Wu, M.C., and Wang, H.Y. (2008). Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 68, 4287–4295.

    Article  CAS  PubMed  Google Scholar 

  • Ye, L.Y., Chen, W., Bai, X.L., Xu, X.Y., Zhang, Q., Xia, X.F., Sun, X., Li, G.G., Hu, Q.D., Fu, Q.H., and Liang, T.B. (2016). Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Res 76, 818–830.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Shi, L., Lu, S., Sun, X., Liu, Y., Li, H., Wang, X., Zhao, C., Zhang, H., and Wang, Y. (2015). Autocrine IL-8 promotes F-actin polymerization and mediate mesenchymal transition via ELMO1-NF-kappaB-Snail signaling in glioma. Cancer Biol Ther 16, 898–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81622039, 81572895, 81372356, 81221061), Shanghai Subject Chief Scientist(14XD1400100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyang Wang or Wen Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, G., Tan, Y., Lv, H. et al. MXR7 facilitates liver cancer metastasis via epithelial-mesenchymal transition. Sci. China Life Sci. 60, 1203–1213 (2017). https://doi.org/10.1007/s11427-016-9042-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-016-9042-y

Keywords

Navigation