Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Science China Life Sciences
  3. Article

Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells

  • Research Paper
  • SPECIAL TOPIC: Fighting cancer with armed T cells
  • Open access
  • Published: 07 March 2016
  • Volume 59, pages 386–397, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Science China Life Sciences Aims and scope Submit manuscript
Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells
Download PDF
  • Fengtao You1,2,3,
  • Licui Jiang2,3,
  • Bozhen Zhang2,3,
  • Qiang Lu4,
  • Qiao Zhou4,
  • Xiaoyang Liao4,
  • Hong Wu4,
  • Kaiqi Du5,
  • Youcai Zhu5,
  • Huimin Meng1,
  • Zhishu Gong6,
  • Yunhui Zong2,3,
  • Lei Huang2,3,
  • Man Lu2,3,
  • Jirong Tang2,3,
  • Yafen Li2,3,
  • Xiaochen Zhai7,
  • Xiangling Wang7,
  • Sisi Ye2,3,
  • Dan Chen2,3,
  • Lei Yuan8,
  • Lin Qi2,3 &
  • …
  • Lin Yang1,2,3,7 
  • 4291 Accesses

  • 112 Citations

  • 20 Altmetric

  • 1 Mention

  • Explore all metrics

Abstract

Recent progress in chimeric antigen receptor-modified T-cell (CAR-T cell) technology in cancer therapy is extremely promising, especially in the treatment of patients with B-cell acute lymphoblastic leukemia. In contrast, due to the hostile immunosuppressive microenvironment of a solid tumor, CAR T-cell accessibility and survival continue to pose a considerable challenge, which leads to their limited therapeutic efficacy. In this study, we constructed two anti-MUC1 CAR-T cell lines. One set of CAR-T cells contained SM3 single chain variable fragment (scFv) sequence specifically targeting the MUC1 antigen and co-expressing interleukin (IL) 12 (named SM3-CAR). The other CAR-T cell line carried the SM3 scFv sequence modified to improve its binding to MUC1 antigen (named pSM3-CAR) but did not co-express IL-12. When those two types of CAR-T cells were injected intratumorally into two independent metastatic lesions of the same MUC1+ seminal vesicle cancer patient as part of an interventional treatment strategy, the initial results indicated no side-effects of the MUC1 targeting CAR-T cell approach, and patient serum cytokines responses were positive. Further evaluation showed that pSM3-CAR effectively caused tumor necrosis, providing new options for improved CAR-T therapy in solid tumors.

Article PDF

Download to read the full article text

Similar content being viewed by others

CAR-T cell therapy: a potential new strategy against prostate cancer

Article Open access 16 October 2019

Giuseppe Schepisi, Maria Concetta Cursano, … Ugo De Giorgi

The potential of CAR T cell therapy for prostate cancer

Article 08 July 2021

Philipp Wolf, Jamal Alzubi, … Toni Cathomen

PSCA is a target of chimeric antigen receptor T cells in gastric cancer

Article Open access 28 January 2020

Di Wu, Jiang Lv, … Yao Yao

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Abken, H. (2015). Adoptive therapy with CAR redirected T cells: the challenges in targeting solid tumors. Immunotherapy 7, 535–544.

    Article  CAS  PubMed  Google Scholar 

  • Acres, B., Lacoste G., and Limacher J.M. (2015). Targeted immunotherapy designed to treat MUC1-expressing solid tumour. Curr Top Microbiol Immunol doi: 10.1007/82_2015_429.

  • Acres, B., and Limacher, J.M. (2005). MUC1 as a target antigen for cancer immunotherapy. Expert Rev Vaccines 4, 493–502.

    Article  CAS  PubMed  Google Scholar 

  • Barnd, D.L., Lan, M.S., Metzgar, R.S., and Finn, O.J. (1989). Specific, major histocompatibility complex-unrestricted recognition of tumor- associated mucins by human cytotoxic T cells. Proc Natl Acad Sci USA 86, 7159–7163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett, D.M., Teachey, D.T., and Grupp S.A. (2014). Toxicity management for patients receiving novel T-cell engaging therapies. Curr Opin Pediatr 26, 43–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beatson, R., Maurstad G., Picco G., Arulappu A., Coleman J., Wandell, H. H., Clausen, H., Mandel, U., Taylor-Papadimitriou, J., Sletmoen, M., and Burchell J.M. (2015). The breast cancer-associated glycoforms of MUC1, MUC1-Tn and sialyl-Tn, are expressed in COSMC wild-type cells and bind the C-type lectin MGL. PLoS One 10, e0125994.

    Article  Google Scholar 

  • Beatson, R.E., Taylor-Papadimitriou, J., and Burchell, J.M. (2010). MUC1 immunotherapy. Immunotherapy 2, 305–327.

    Article  CAS  PubMed  Google Scholar 

  • Blixt, O., Bueti, D., Burford, B., Allen, D., Julien, S., Hollingsworth, M., Gammerman, A., Fentiman, I., Taylor-Papadimitriou, J., and Burchell J. M. (2011). Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis. Breast Cancer Res 13, R25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burchell, J., and Taylor-Papadimitriou, J. (1993). Effect of modification of carbohydrate side chains on the reactivity of antibodies with core-protein epitopes of the MUC1 gene product. Epithelial Cell Biol 2, 155–162.

    CAS  PubMed  Google Scholar 

  • Chinnasamy, D., Yu, Z., Kerkar, S.P., Zhang, L., Morgan, R.A., Restifo, N.P., and Rosenberg, S.A. (2012). Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res 18, 1672–1683.

    Article  CAS  PubMed  Google Scholar 

  • Chmielewski, M., and Abken, H. (2015). TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 15, 1145–1154.

    Article  CAS  PubMed  Google Scholar 

  • Chmielewski, M., Hombach, A.A., and Abken H. (2014). Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev 257, 83–90.

    Article  CAS  PubMed  Google Scholar 

  • Condomines, M., Arnason, J., Benjamin R., Gunset G., Plotkin, J., and Sadelain, M. (2015). Tumor-targeted human T cells expressing CD28-based chimeric antigen receptors circumvent CTLA-4 inhibition. PLoS One 10, e0130518.

    Article  Google Scholar 

  • Correa, I., Plunkett T., Vlad, A., Mungul, A., Candelora-Kettel, J., Burchell, J.M., Taylor-Papadimitriou, J., and Finn, O.J. (2003). Form and pattern of MUC1 expression on T cells activated in vivo or in vitro suggests a function in T-cell migration. Immunology 108, 32–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craddock, J.A., Lu, A., Bear, A., Pule, M., Brenner, M.K., Rooney, C.M., and Foster, A.E. (2010). Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother 33, 780–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalziel, M., Whitehouse, C., McFarlane, I., Brockhausen, I., Gschmeissner, S., Schwientek, T., Clausen, H., Burchell, J.M., and Taylor-Papadimitriou, J. (2001). The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1. J Biol Chem 276, 11007–11015.

    Article  CAS  PubMed  Google Scholar 

  • Davila, M.L., and Brentjens, R. (2013). Chimeric antigen receptor therapy for chronic lymphocytic leukemia: what are the challenges–Hematol Oncol Clin North Am 27, 341–353.

  • Dhani, N., Fyles, A., Hedley, D., and Milosevic, M. (2015). The clinical significance of hypoxia in human cancers. Semin Nucl Med 45, 110–121.

    Article  PubMed  Google Scholar 

  • Gendler, S.J., Spicer, A.P., Lalani, E.N., Duhig, T., Peat, N., Burchell, J., Pemberton, L., Boshell, M., and Taylor-Papadimitriou, J. (1991). Structure and biology of a carcinoma-associated mucin, MUC1. Am Rev Respir Dis 144, S42–S47.

    Article  CAS  PubMed  Google Scholar 

  • Gheybi, E., Amani, J., Salmanian, A.H., Mashayekhi, F., and Khodi, S. (2014). Designing a recombinant chimeric construct contain MUC1 and HER2 extracellular domain for prediagnostic breast cancer. Tumour Biol 35, 11489–11497.

    Article  CAS  PubMed  Google Scholar 

  • Granowska, M., Britton, K.E., Mather, S.J., Lowe, D.G., Ellison, D., Bomanji, J., Burchell, J., Taylor-Papadimitriou, J., Hudson, C.R., and Shepherd, J.H. (1993). Radioimmunoscintigraphy with technetium- 99m-labelled monoclonal antibody, SM3, in gynaecological cancer. Eur J Nucl Med 20, 483–489.

    Article  CAS  PubMed  Google Scholar 

  • Granowska, M., Mather, S.J., Jobling, T., Naeem, M., Burchell, J., Taylor-Papadimitriou, J., Shepherd, J., and Britton, K.E. (1990). Radiolabelled stripped mucin, SM3, monoclonal antibody for immunoscintigraphy of ovarian tumours. Int J Biol Markers 5, 89–96.

    CAS  PubMed  Google Scholar 

  • Gross, T., Wagner, A., Ugurel, S., Tilgen, W., and Reinhold, U. (2001). Identification of TIA-1+ and granzyme B+ cytotoxic T cells in lichen sclerosus et atrophicus. Dermatology 202, 198–202.

    Article  CAS  PubMed  Google Scholar 

  • Grupp, S.A., Kalos, M., Barrett, D., Aplenc, R., Porter, D.L., Rheingold, S.R., Teachey, D.T., Chew, A., Hauck, B., Wright, J.F., Milone, M.C., Levine, B.L., and June, C.H. (2013). Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368, 1509–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillerdal, V., and Essand, M. (2015). Chimeric antigen receptor-engineered T cells for the treatment of metastatic prostate cancer. BioDrugs 29, 75–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, M.C., and Riddell, S.R. (2014). Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev 257, 127–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonckheere, N., and van Seuningen, I. (2010). The membrane-bound mucins: from cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie 92, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Jonnalagadda, M., Mardiros, A., Urak, R., Wang, X., Hoffman, L.J., Bernanke, A., Chang, W.C., Bretzlaff, W., Starr, R., Priceman, S., Ostberg, J.R., Forman, S.J., and Brown, C.E. (2015). Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy. Mol Ther 23, 757–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakarla, S., and Gottschalk, S. (2014). CAR T cells for solid tumors: armed and ready to go–Cancer J 20, 151–155.

    CAS  Google Scholar 

  • Kimura, T., and Finn, O.J. (2013). MUC1 immunotherapy is here to stay. Expert Opin Biol Ther 13, 35–49.

    Article  CAS  PubMed  Google Scholar 

  • Koehler, H., Kofler, D., Hombach, A., and Abken, H. (2007). CD28 costimulation overcomes transforming growth factor-beta-mediated repression of proliferation of redirected human CD4+ and CD8+ T cells in an antitumor cell attack. Cancer Res 67, 2265–2273.

    Article  CAS  PubMed  Google Scholar 

  • Kofler, D.M., Chmielewski, M., Rappl, G., Hombach, A., Riet, T., Schmidt, A., Hombach, A. A., Wendtner, C.M., and Abken, H. (2011). CD28 costimulation Impairs the efficacy of a redirected T-cell antitumor attack in the presence of regulatory T cells which can be overcome by preventing Lck activation. Mol Ther 19, 760–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger, W., Kroger, N., and Zander, A.R. (2000). MUC1 expression in hemopoietic tissues. J Hematother Stem Cell Res 9, 409–410.

    Article  CAS  PubMed  Google Scholar 

  • Lamers, C.H., Sleijfer, S., van Steenbergen, S., van Elzakker, P., van Krimpen, B., Groot, C., Vulto, A., den Bakker, M., Oosterwijk, E., Debets, R., and Gratama, J.W. (2013). Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21, 904–912.

    Article  CAS  PubMed  Google Scholar 

  • Lamers, C.H., van Steenbergen-Langeveld, S., van Brakel, M., Groot-van Ruijven, C.M., van Elzakker, P.M., van Krimpen, B., Sleijfer, S., and Debets, R. (2014). T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness. Hum Gene Ther Methods 25, 345–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutschg, V., Boucke, K., Hemmi, S., and Greber, U.F. (2011). Chemotactic antiviral cytokines promote infectious apical entry of human adenovirus into polarized epithelial cells. Nat Commun 2, 391.

    Article  PubMed  Google Scholar 

  • Madsen, C.B., Wandall, H.H., and Pedersen, A.E. (2013). Potential for novel MUC1 glycopeptide-specific antibody in passive cancer immunotherapy. Immunopharmacol Immunotoxicol 35, 649–652.

    Article  CAS  PubMed  Google Scholar 

  • Maher, J., and Wilkie, S. (2009). CAR mechanics: driving T cells into the MUC of cancer. Cancer Res 69, 4559–4562.

    Article  CAS  PubMed  Google Scholar 

  • Maude, S.L., Frey, N., Shaw, P.A., Aplenc, R., Barrett, D.M., Bunin, N. J., Chew, A., Gonzalez,V.E., Zheng Z.,, Lacey, S.F., Mahnke,Y.D., Melenhorst, J.J., Rheingold, S.R., Shen, A., Teachey, D.T., Levine, B.L., June, C.H., Porter, D.L., and Grupp, S.A. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371,1507–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maude, S.L., Shpall, E.J., and Grupp, S.A. (2014). Chimeric antigen receptor T-cell therapy for ALL. Hematology Am Soc Hematol Educ Program 2014, 559–564.

    Article  PubMed  Google Scholar 

  • Maude, S.L., Teachey, D.T., Porter, D.L., and Grupp, S.A. (2015). CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 125, 4017–4023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan, R.A., Yang, J.C., Kitano, M., Dudley, M.E., Laurencot, C.M. and Rosenberg, S.A. (2010). Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18, 843–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mungul, A., Cooper, L., Brockhausen, I., Ryder, K., Mandel, U., Clausen, H., Rughetti, A., Miles, D.W., Taylor-Papadimitriou, J., and Burchell, J.M. (2004). Sialylated core 1 based O-linked glycans enhance the growth rate of mammary carcinoma cells in MUC1 transgenic mice. Int J Oncol 25, 937–943.

    CAS  PubMed  Google Scholar 

  • Oleinika, K., Nibbs, R.J., Graham, G.J., and Fraser, A.R. (2013). Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 171, 36–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peat, N., Gendler, S.J., Lalani, N., Duhig, T., and Taylor-Papadimitriou, J. (1992). Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice. Cancer Res 52, 1954–1960.

    CAS  PubMed  Google Scholar 

  • Pegram, H.J., Lee, J.C., Hayman, E.G., Imperato, G.H., Tedder, T.F., Sadelain, M., and Brentjens, R.J. (2012). Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133–4141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegram, H.J., Park, J.H., and Brentjens, R.J. (2014). CD28z CARs and armored CARs. Cancer J 20, 127–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegram, H.J., Purdon, T.J., van Leeuwen, D.G., Curran, K.J., Giralt, S.A., Barker, J.N., and Brentjens, R.J. (2015). IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia 29, 415–422.

    Article  CAS  PubMed  Google Scholar 

  • Porter, D.L., Levine, B.L., Kalos, M., Bagg, A., and June, C.H. (2011). Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365, 725–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi, S., Ono, M., Setoguchi, R., Yagi, H., Hori, S., Fehervari, Z., Shimizu, J., Takahashi, T., and Nomura, T. (2006). Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212, 8–27.

    Article  CAS  PubMed  Google Scholar 

  • Tang, C.K., and Apostolopoulos, V. (2008). Strategies used for MUC1 immunotherapy: preclinical studies. Expert Rev Vaccines 7, 951–962.

    Article  CAS  PubMed  Google Scholar 

  • Tang, C.K., Katsara, M., and Apostolopoulos, V. (2008). Strategies used for MUC1 immunotherapy: human clinical studies. Expert Rev Vaccines 7, 963–975.

    Article  CAS  PubMed  Google Scholar 

  • Tarp, M.A., Sorensen, A.L., Mandel, U., Paulsen, H., Burchell, J., Taylor-Papadimitriou, J., and Clausen, H. (2007). Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology 17, 197–209.

    Article  CAS  PubMed  Google Scholar 

  • Taylor-Papadimitriou, J., Burchell, J.M., Plunkett, T., Graham, R., Correa, I., Miles, D., and Smith, M. (2002). MUC1 and the immunobiology of cancer. J Mammary Gland Biol Neoplasia 7, 209–221.

    Article  PubMed  Google Scholar 

  • Taylor-Papadimitriou, J., D’Souza, B., Burchell, J., Kyprianou, N., and Berdichevsky, F. (1993). The role of tumor-associated antigens in the biology and immunotherapy of breast cancer. Ann N YA cad Sci 698, 31–47.

    Article  CAS  Google Scholar 

  • Turtle, C.J. (2014). Chimeric antigen receptor modified T cell therapy for B cell malignancies. Int J Hematol 99, 132–140.

    Article  CAS  PubMed  Google Scholar 

  • Wilkie, S., Picco, G., Foster, J., Davies, D.M., Julien, S., Cooper, L., Arif, S., Mather, S.J., Taylor-Papadimitriou, J.

  • Burchell, J.M., and Maher, J. (2008). Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 180, 4901-4909.

    Article  PubMed  Google Scholar 

  • Yang, E., Hu, X.F., and Xing P.X. (2007). Advances of MUC1 as a target for breast cancer immunotherapy. Histol Histopathol 22, 905–922.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. The Cyrus Tang Hematology Center; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China

    Fengtao You, Huimin Meng & Lin Yang

  2. Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou, 215123, China

    Fengtao You, Licui Jiang, Bozhen Zhang, Yunhui Zong, Lei Huang, Man Lu, Jirong Tang, Yafen Li, Sisi Ye, Dan Chen, Lin Qi & Lin Yang

  3. Persongen Biomedicine (Suzhou) Co., Ltd, Suzhou, 215123, China

    Fengtao You, Licui Jiang, Bozhen Zhang, Yunhui Zong, Lei Huang, Man Lu, Jirong Tang, Yafen Li, Sisi Ye, Dan Chen, Lin Qi & Lin Yang

  4. West China Hospital, Sichuan University, Chengdu, 610041, China

    Qiang Lu, Qiao Zhou, Xiaoyang Liao & Hong Wu

  5. Department of Cardiothoracic Surgery, Chinese People’s Armed Police Force of Zhejiang Corps Hospital, Jiaxing, 314000, China

    Kaiqi Du & Youcai Zhu

  6. The Medical Group of Zhengzhou First People’s Hospital, Zhengzhou, 450004, China

    Zhishu Gong

  7. College of Pharmacy, Xi’an Jiaotong University, Suzhou, 215123, China

    Xiaochen Zhai, Xiangling Wang & Lin Yang

  8. Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China

    Lei Yuan

Authors
  1. Fengtao You
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Licui Jiang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Bozhen Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Qiang Lu
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Qiao Zhou
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Xiaoyang Liao
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Hong Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Kaiqi Du
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Youcai Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Huimin Meng
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. Zhishu Gong
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. Yunhui Zong
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. Lei Huang
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. Man Lu
    View author publications

    You can also search for this author in PubMed Google Scholar

  15. Jirong Tang
    View author publications

    You can also search for this author in PubMed Google Scholar

  16. Yafen Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  17. Xiaochen Zhai
    View author publications

    You can also search for this author in PubMed Google Scholar

  18. Xiangling Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  19. Sisi Ye
    View author publications

    You can also search for this author in PubMed Google Scholar

  20. Dan Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  21. Lei Yuan
    View author publications

    You can also search for this author in PubMed Google Scholar

  22. Lin Qi
    View author publications

    You can also search for this author in PubMed Google Scholar

  23. Lin Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Lin Yang.

Electronic supplementary material

Supplementary material, approximately 538 KB.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, F., Jiang, L., Zhang, B. et al. Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells. Sci. China Life Sci. 59, 386–397 (2016). https://doi.org/10.1007/s11427-016-5024-7

Download citation

  • Received: 26 December 2015

  • Accepted: 16 January 2016

  • Published: 07 March 2016

  • Issue Date: April 2016

  • DOI: https://doi.org/10.1007/s11427-016-5024-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • MUC1
  • CAR-T therapy
  • solid tumor
  • seminal vesicle cancer
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature