Skip to main content
Log in

Acidic domains differentially read histone H3 lysine 4 methylation status and are widely present in chromatin-associated proteins

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 12 April 2017

Abstract

Histone methylation is believed to provide binding sites for specific reader proteins, which translate histone code into biological function. Here we show that a family of acidic domain-containing proteins including nucleophosmin (NPM1), pp32, SET/TAF1β, nucleolin (NCL) and upstream binding factor (UBF) are novel H3K4me2-binding proteins. These proteins exhibit a unique pattern of interaction with methylated H3K4, as their binding is stimulated by H3K4me2 and inhibited by H3K4me1 and H3K4me3. These proteins contain one or more acidic domains consisting mainly of aspartic and/or glutamic residues that are necessary for preferential binding of H3K4me2. Furthermore, we demonstrate that the acidic domain with sufficient length alone is capable of binding H3K4me2 in vitro and in vivo. NPM1, NCL and UBF require their acidic domains for association with and transcriptional activation of rDNA genes. Interestingly, by defining acidic domain as a sequence with at least 20 acidic residues in 50 continuous amino acids, we identified 655 acidic domain-containing protein coding genes in the human genome and Gene Ontology (GO) analysis showed that many of the acidic domain proteins have chromatin-related functions. Our data suggest that acidic domain is a novel histone binding motif that can differentially read the status of H3K4 methylation and is broadly present in chromatin-associated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelov, D., Bondarenko, V.A., Almagro, S., Menoni, H., Mongélard, F., Hans, F., Mietton, F., Studitsky, V.M., Hamiche, A., Dimitrov, S., and Bouvet, P. (2006). Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J 25, 1669–1679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, D.W., Wang, Y., Wu, M., Wong, J., Qin, J., and Zhao, Y. (2009). Unbiased proteomic screen for binding proteins to modified lysines on histone H3. Proteomics 9, 2343–2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., and Xue, Y. (2016). Emerging roles of non-coding RNAs in epigenetic regulation. Sci China Life Sci 59, 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Cong, R., Das, S., Douet, J., Wong, J., Buschbeck, M., Mongelard, F., and Bouvet, P. (2014). macroH2A1 histone variant represses rDNA transcription. Nucleic Acids Res 42, 181–192.

    Article  CAS  PubMed  Google Scholar 

  • Cong, R., Das, S., Ugrinova, I., Kumar, S., Mongelard, F., Wong, J., and Bouvet, P. (2012). Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase I transcription. Nucleic Acids Res 40, 9441–9454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Couture, J.F., Collazo, E., and Trievel, R.C. (2006). Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol 13, 698–703.

    Article  CAS  PubMed  Google Scholar 

  • Feng, W., Yonezawa, M., Ye, J., Jenuwein, T., and Grummt, I. (2010). PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat Struct Mol Biol 17, 445–450.

    Article  CAS  PubMed  Google Scholar 

  • Greer, E.L., and Shi, Y. (2012). Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13, 343–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grummt, I., and Längst, G. (2013). Epigenetic control of RNA polymerase I transcription in mammalian cells. Biochim Biophys Acta 1829, 393–404.

    Article  CAS  PubMed  Google Scholar 

  • Han, Z., Guo, L., Wang, H., Shen, Y., Deng, X.W., and Chai, J. (2006). Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol Cell 22, 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Jantzen, H.M., Admon, A., Bell, S.P., and Tjian, R. (1990). Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344, 830–836.

    Article  CAS  PubMed  Google Scholar 

  • Jantzen, H.M., Chow, A.M., King, D.S., and Tjian, R. (1992). Multiple domains of the RNA polymerase I activator hUBF interact with the TATAbinding protein complex hSL1 to mediate transcription. Genes Dev 6, 1950–1963.

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  • Justin, N., De Marco, V., Aasland, R., and Gamblin, S.J. (2010). Reading, writing and editing methylated lysines on histone tails: new insights from recent structural studies. Curr Opin Struct Biol 20, 730–738.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Daniel, J., Espejo, A., Lake, A., Krishna, M., Xia, L., Zhang, Y., and Bedford, M.T. (2006). Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep 7, 397–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzarides, T. (2002). Histone methylation in transcriptional control. Curr Opin Genets Dev 12, 198–209.

    Article  CAS  Google Scholar 

  • Li, J., Chu, M., Wang, S., Chan, D., Qi, S., Wu, M., Zhou, Z., Li, J., Nishi, E., Qin, J., and Wong, J. (2012). Identification and characterization of nardilysin as a novel dimethyl H3K4-binding protein involved in transcriptional regulation. J Biol Chem 287, 10089–10098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindström, M.S. (2011). NPM1/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem Res Int doi: 10.1155/2011/195209.

    Google Scholar 

  • Lolkema, M.P., Gervais, M.L., Snijckers, C.M., Hill, R.P., Giles, R.H., Voest, E.E., and Ohh, M. (2005). Tumor suppression by the von Hippel-Lindau protein requires phosphorylation of the acidic domain. J Biol Chem 280, 22205–22211.

    Article  CAS  PubMed  Google Scholar 

  • Maeda, Y., Hisatake, K., Kondo, T., Hanada, K., Song, C.Z., Nishimura, T., and Muramatsu, M. (1992). Mouse rRNA gene transcription factor mUBF requires both HMG-box1 and an acidic tail for nucleolar accumulation: molecular analysis of the nucleolar targeting mechanism. EMBO J 11, 3695–3704.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, C., and Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6, 838–849.

    Article  CAS  PubMed  Google Scholar 

  • Matthews, A.G.W., Kuo, A.J., Ramón-Maiques, S., Han, S., Champagne, K.S., Ivanov, D., Gallardo, M., Carney, D., Cheung, P., Ciccone, D.N., Walter, K.L., Utz, P.J., Shi, Y., Kutateladze, T.G., Yang, W., Gozani, O., and Oettinger, M.A. (2007). RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBryant, S.J., Park, Y.J., Abernathy, S.M., Laybourn, P.J., Nyborg, J.K., and Luger, K. (2003). Preferential binding of the histone (H3-H4)2 tetramer by NAP1 is mediated by the amino-terminal histone tails. J Biol Chem 278, 44574–44583.

    Article  CAS  PubMed  Google Scholar 

  • Mongelard, F., and Bouvet, P. (2007). Nucleolin: a multiFACeTed protein. Trends Cell Biol 17, 80–86.

    Article  CAS  PubMed  Google Scholar 

  • Murano, K., Okuwaki, M., Hisaoka, M., and Nagata, K. (2008). Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol Cell Biol 28, 3114–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair, S.S., Nair, B.C., Cortez, V., Chakravarty, D., Metzger, E., Schüle, R., Brann, D.W., Tekmal, R.R., and Vadlamudi, R.K. (2010). PELP1 is a reader of histone H3 methylation that facilitates oestrogen receptor- a target gene activation by regulating lysine demethylase 1 specificity. EMBO Rep 11, 438–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka, K., Chuikov, S., Sarma, K., Erdjument-Bromage, H., Allis, C.D., Tempst, P., and Reinberg, D. (2002). Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 16, 479–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, D.J., and Wang, Z. (2013). Readout of epigenetic modifications. Annu Rev Biochem 82, 81–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, J., Shi, G., Jia, Y., Li, J., Wu, M., Li, J., Dong, S., and Wong, J. (2010). The X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiation. Cell Res 20, 908–918.

    Article  CAS  PubMed  Google Scholar 

  • Renaud, M., Praz, V., Vieu, E., Florens, L., Washburn, M.P., l’Hô te, P., and Hernandez, N. (2014). Gene duplication and neofunctionalization: POLR3G and POLR3GL. Genome Res 24, 37–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rickards, B., Flint, S.J., Cole, M.D., and LeRoy, G. (2007). Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol 27, 937–948.

    Article  CAS  PubMed  Google Scholar 

  • Ruthenburg, A.J., Allis, C.D., and Wysocka, J. (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25, 15–30.

    Article  CAS  PubMed  Google Scholar 

  • Ruthenburg, A.J., Wang, W., Graybosch, D.M., Li, H., Allis, C.D., Patel, D.J., and Verdine, G.L. (2006). Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nat Struct Mol Biol 13, 704–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Rosa, H., Schneider, R., Bannister, A.J., Sherriff, J., Bernstein, B.E., Emre, N.C.T., Schreiber, S.L., Mellor, J., and Kouzarides, T. (2002). Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411.

    Article  CAS  PubMed  Google Scholar 

  • Schnapp, G., Santori, F., Carles, C., Riva, M., and Grummt, I. (1994). The HMG box-containing nucleolar transcription factor UBF interacts with a specific subunit of RNA polymerase I. EMBO J 13, 190–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuetz, A., Allali-Hassani, A., Martín, F., Loppnau, P., Vedadi, M., Bochkarev, A., Plotnikov, A.N., Arrowsmith, C.H., and Min, J. (2006). Structural basis for molecular recognition and presentation of histone H3 By WDR5. EMBO J 25, 4245–4252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo, S., Macfarlan, T., McNamara, P., Hong, R., Mukai, Y., Heo, S., and Chakravarti, D. (2002). Regulation of histone acetylation and transcription by nuclear protein pp32, a subunit of the INHAT complex. J Biol Chem 277, 14005–14010.

    Article  CAS  PubMed  Google Scholar 

  • Seo, S., McNamara, P., Heo, S., Turner, A., Lane, W.S., and Chakravarti, D. (2001). Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 104, 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Shi, G., Wu, M., Fang, L., Yu, F., Cheng, S., Li, J., Du, J.X., and Wong, J. (2014). PHD finger protein 2 (PHF2) represses ribosomal RNA gene transcription by antagonizing PHF finger protein 8 (PHF8) and recruiting methyltransferase SUV39H1. J Biol Chem 289, 29691–29700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, X., Hong, T., Walter, K.L., Ewalt, M., Michishita, E., Hung, T., Carney, D., P eña, P., Lan, F., Kaadige, M.R., Lacoste, N., Cayrou, C., Davrazou, F., Saha, A., Cairns, B.R., Ayer, D.E., Kutateladze, T.G., Shi, Y., Côté, J., Chua, K.F., and Gozani, O. (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shilatifard, A. (2012). The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81, 65–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinz, A. (2010). Investigation of protein-protein interactions in living cells by chemical crosslinking and mass spectrometry. Anal Bioanal Chem 397, 3433–3440.

    Article  CAS  PubMed  Google Scholar 

  • van Ingen, H., van Schaik, F.M.A., Wienk, H., Ballering, J., Rehmann, H., Dechesne, A.C., Kruijzer, J.A.W., Liskamp, R.M.J., Timmers, H.T.M., and Boelens, R. (2008). Structural insight into the recognition of the H3K4me3 mark by the TFIID subunit TAF3. Structure 16, 1245–1256.

    Article  PubMed  Google Scholar 

  • Vermeulen, M., Eberl, H.C., Matarese, F., Marks, H., Denissov, S., Butter, F., Lee, K.K., Olsen, J.V., Hyman, A.A., Stunnenberg, H.G., and Mann, M. (2010). Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142, 967–980.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Chen, Z., Mao, Z., Zhang, H., Ding, X., Chen, S., Zhang, X., Xu, R., and Zhu, B. (2011). Nucleolar protein Spindlin1 recognizes H3K4 methylation and stimulates the expression of rRNA genes. EMBO Rep 12, 1160–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen, H., Li, J., Song, T., Lu, M., Kan, P.Y., Lee, M.G., Sha, B., and Shi, X. (2010). Recognition of histone H3K4 trimethylation by the plant homeodomain of PHF2 modulates histone demethylation. J Biol Chem 285, 9322–9326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, M., Wang, L., Li, Q., Li, J., Qin, J., and Wong, J. (2013). The MTA family proteins as novel histone H3 binding proteins. Cell Biosci 3, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wysocka, J., Swigut, T., Milne, T.A., Dou, Y., Zhang, X., Burlingame, A.L., Roeder, R.G., Brivanlou, A.H., and Allis, C.D. (2005). WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872.

    Article  CAS  PubMed  Google Scholar 

  • Xu, G.L., and Wong, J. (2015). Oxidative DNA demethylation mediated by Tet enzymes. Nat Sci Rev 2, 318–328.

    Article  Google Scholar 

  • Xu, Q.Q., Zhang, F.W., He, H.J., Xu, S.Q., Li, K., Liu, S.S., Li, Y., and Wu, Q. (2011). Expression profile of mouse Mterfd2, a novel component of the mitochondrial transcription termination factor (MTERF) family. Genes Genet Syst 86, 269–275.

    Article  CAS  PubMed  Google Scholar 

  • Yap, K.L., and Zhou, M.M. (2010). Keeping it in the family: diverse histone recognition by conserved structural folds. Crit Rev Biochem Mol Biol 45, 488–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentner, G.E., Saiakhova, A., Manaenkov, P., Adams, M.D., and Scacheri, P.C. (2011). Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res 39, 4949–4960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., and Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15, 2343–2360.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Jinqiu Zhou for kindly providing H3K4me2 peptide and Dr. Philippe Bouvet for nucleolin antibody. We thank members of Wong’s laboratory for valuable discussion. Meng Wu, Wei Wei, Jiwen Li, Jiemin Wong, and James X. Du conceived and designed the study. Meng Wu, Wei Wei, Q.Z. and Rong Cong performed the experiments. Jiwei Chen and Tieliu Shi carried out bioinformatics analysis. Jiemin Wong and James X. Du wrote the manuscript. All the authors read and approve the final manuscript. This work was supported by the Ministry of Science and Technology of China (2015CB910402) to Jiemin Wong, the National Natural Science Foundation of China (91419303), The Science and Technology Commission of Shanghai Municipality (14XD1401700, 11DZ2260300), the National Science & Technology Major Project “Key New Drug Creation and Manufacturing Program” of China (2014ZX09507002-002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiemin Wong or James X. Du.

Additional information

Contributed equally to this work

An erratum to this article is available at http://dx.doi.org/10.1007/s11427-017-9025-9.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Wei, W., Chen, J. et al. Acidic domains differentially read histone H3 lysine 4 methylation status and are widely present in chromatin-associated proteins. Sci. China Life Sci. 60, 138–151 (2017). https://doi.org/10.1007/s11427-016-0413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-016-0413-3

Keywords

Navigation