Science China Life Sciences

, Volume 60, Issue 4, pp 363–369 | Cite as

The genome-wide molecular regulation of mouse gastrulation embryo

  • Guangdun PengEmail author
  • Naihe JingEmail author


The diverse morphologies among vertebrate species stems from the evolution of a basic body plan that is constituted by a spatially organized ensemble of tissue lineage progenitors. At gastrulation, this body plan is established through a coordinated morphogenetic process and the delineation of tissue lineages that are driven by the activity of the genome. To explore the molecular mechanisms, in a comprehensive context, it is imperative to glean an understanding of the region- and population-specific genetic activity underpinning this fundamental developmental process. In this review, we outline the recent progresses and the future directions in studies of genome activity for the regulation of mouse embryogenesis at gastrulation.


mouse embryo gastrulation stem cell lineage transcriptome landscape early development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We apologized to authors whose works have not been cited here because of space limitation. This work was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA01010201), National Key Basic Research and Development Program of China (2014CB964804, 2015CB964500), and National Natural Science Foundation of China (31430058, 31571513, 31630043, 91519314).


  1. Alev, C., Wu, Y., Kasukawa, T., Jakt, L.M., Ueda, H.R., and Sheng, G. (2010). Transcriptomic landscape of the primitive streak. Development 137, 2863–2874.CrossRefPubMedGoogle Scholar
  2. Arendt, D., and Nübler-Jung, K. (1999). Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk-rich amniote eggs. Mechanisms Dev 81, 3–22.CrossRefPubMedGoogle Scholar
  3. Beddington, R.S. (1981). An autoradiographic analysis of the potency of embryonic ectoderm in the 8th day postimplantation mouse embryo. J Embryol Exp Morphol 64, 87–104.PubMedGoogle Scholar
  4. Beddington, R.S. (1982). An autoradiographic analysis of tissue potency in different regions of the embryonic ectoderm during gastrulation in the mouse. J Embryol Exp Morphol 69, 265–285.PubMedGoogle Scholar
  5. Beddington, R.S. (1994). Induction of a second neural axis by the mouse node. Development 120, 613–620.PubMedGoogle Scholar
  6. Boward, B., Wu, T., and Dalton, S. (2016). Concise review: control of cell fate through cell cycle and pluripotency networks. Stem Cells 34, 1427–1436.CrossRefPubMedGoogle Scholar
  7. Cheng, X., Ying, L., Lu, L., Galvão, A.M., Mills, J.A., Lin, H.C., Kotton, D.N., Shen, S.S., Nostro, M.C., Choi, J.K., Weiss, M.J., French, D.L., and Gadue, P. (2012). Self-renewing endodermal progenitor lines generated from human pluripotent stem cells. Cell Stem Cell 10, 371–384.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Costello, I., Nowotschin, S., Sun, X., Mould, A.W., Hadjantonakis, A.K., Bikoff, E.K., and Robertson, E.J. (2015). Lhx1 functions together with Otx2, Foxa2, and Ldb1 to govern anterior mesendoderm, node, and midline development. Genes Dev 29, 2108–2122.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dahl, J.A., Jung, I., Aanes, H., Greggains, G.D., Manaf, A., Lerdrup, M., Li, G., Kuan, S., Li, B., Lee, A.Y., Preissl, S., Jermstad, I., Haugen, M.H., Suganthan, R., Bjørås, M., Hansen, K., Dalen, K.T., Fedorcsak, P., Ren, B., and Klungland, A. (2016). Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548–552.CrossRefPubMedGoogle Scholar
  10. Dalton, S. (2015). Linking the cell cycle to cell fate decisions. Trends Cell Biol 25, 592–600.CrossRefPubMedPubMedCentralGoogle Scholar
  11. De Robertis, E.M., Fainsod, A., Gont, L.K., and Steinbeisser, H. (1994). The evolution of vertebrate gastrulation. Development 120 Supplement, 117−124.Google Scholar
  12. Deglincerti, A., Croft, G.F., Pietila, L.N., Zernicka-Goetz, M., Siggia, E.D., and Brivanlou, A.H. (2016). Self-organization of the in vitro attached human embryo. Nature 533, 251–254.CrossRefPubMedGoogle Scholar
  13. Fang, H., Yang, Y., Li, C., Fu, S., Yang, Z., Jin, G., Wang, K., Zhang, J., and Jin, Y. (2010). Transcriptome analysis of early organogenesis in human embryos. Dev Cell 19, 174–184.CrossRefPubMedGoogle Scholar
  14. Green, R.M. (1995). Report of the human embryo research panel. Kennedy Inst Ethics J 5, 83–86.CrossRefPubMedGoogle Scholar
  15. Han, D.W., Tapia, N., Joo, J.Y., Greber, B., Araúzo-Bravo, M.J., Bernemann, C., Ko, K., Wu, G., Stehling, M., Do, J.T., and Schöler, H.R. (2010). Epiblast stem cell subpopulations represent mouse embryos of distinct pregastrulation stages. Cell 143, 617–627.CrossRefPubMedGoogle Scholar
  16. Hashimshony, T., Feder, M., Levin, M., Hall, B.K., and Yanai, I. (2015). Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature 519, 219–222.CrossRefPubMedGoogle Scholar
  17. Kojima, Y., Kaufman-Francis, K., Studdert, J.B., Steiner, K.A., Power, M.D., Loebel, D.A.F., Jones, V., Hor, A., de Alencastro, G., Logan, G.J., Teber, E.T., Tam, O.H., Stutz, M.D., Alexander, I.E., Pickett, H.A., and Tam, P.P.L. (2014a). The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell 14, 107–120.CrossRefPubMedGoogle Scholar
  18. Kojima, Y., Tam, O.H., and Tam, P.P.L. (2014b). Timing of developmental events in the early mouse embryo. Semin Cell Dev Biol 34, 65–75.CrossRefPubMedGoogle Scholar
  19. Lawson, K.A., Meneses, J.J., and Pedersen, R.A. (1991). Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911.PubMedGoogle Scholar
  20. Lawson, K.A., and Pedersen, R.A. (1987). Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development 101, 627–652.PubMedGoogle Scholar
  21. Li, L., Song, L., Liu, C., Chen, J., Peng, G., Wang, R., Liu, P., Tang, K., Rossant, J., and Jing, N. (2015). Ectodermal progenitors derived from epiblast stem cells by inhibition of Nodal signaling. J Mol Cell Biol 7, 455–465.CrossRefPubMedGoogle Scholar
  22. Liu, X., Wang, C., Liu, W., Li, J., Li, C., Kou, X., Chen, J., Zhao, Y., Gao, H., Wang, H., Zhang, Y., Gao, Y., and Gao, S. (2016). Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558–562.CrossRefPubMedGoogle Scholar
  23. Luo, S., Lu, J.Y., Liu, L., Yin, Y., Chen, C., Han, X., Wu, B., Xu, R., Liu, W., Yan, P., Shao, W., Lu, Z., Li, H., Na, J., Tang, F., Wang, J., Zhang, Y.E., and Shen, X. (2016). Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell 18, 637–652.CrossRefPubMedGoogle Scholar
  24. Martindale, M.Q. (2005). The evolution of metazoan axial properties. Nat Rev Genet 6, 917–927.CrossRefPubMedGoogle Scholar
  25. Mitiku, N., and Baker, J.C. (2007). Genomic analysis of gastrulation and organogenesis in the mouse. Dev Cell 13, 897–907.CrossRefPubMedGoogle Scholar
  26. Nakamura, T., Okamoto, I., Sasaki, K., Yabuta, Y., Iwatani, C., Tsuchiya, H., Seita, Y., Nakamura, S., Yamamoto, T., and Saitou, M. (2016). A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62.CrossRefPubMedGoogle Scholar
  27. Parameswaran, M., and Tam, P.P.L. (1995). Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet 17, 16–28.CrossRefPubMedGoogle Scholar
  28. Peng, G., Suo, S., Chen, J., Chen, W., Liu, C., Yu, F., Wang, R., Chen, S., Sun, N., Cui, G., Song, L., Tam, P.P.L., Han, J.D.J., and Jing, N. (2016). Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev Cell 36, 681–697.CrossRefPubMedGoogle Scholar
  29. Pfister, S., Steiner, K.A., and Tam, P.P.L. (2007). Gene expression pattern and progression of embryogenesis in the immediate post-implantation period of mouse development. Gene Expr Patterns 7, 558–573.CrossRefPubMedGoogle Scholar
  30. Rodaway, A., and Patient, R. (2001). Mesendoderm. an ancient germ layer? Cell 105, 169–172.CrossRefPubMedGoogle Scholar
  31. Rossant, J., and Tam, P.P.L. (2009). Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136, 701–713.CrossRefPubMedGoogle Scholar
  32. Scialdone, A., Tanaka, Y., Jawaid, W., Moignard, V., Wilson, N.K., Macaulay, I.C., Marioni, J.C., and Göttgens, B. (2016). Resolving early mesoderm diversification through single-cell expression profiling. Nature 535, 289–293.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shahbazi, M.N., Jedrusik, A., Vuoristo, S., Recher, G., Hupalowska, A., Bolton, V., Fogarty, N.M.E., Campbell, A., Devito, L.G., Ilic, D., Khalaf, Y., Niakan, K.K., Fishel, S., and Zernicka-Goetz, M. (2016). Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol 18, 700–708.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sheng, G. (2015). Epiblast morphogenesis before gastrulation. Dev Biol 401, 17–24.CrossRefPubMedGoogle Scholar
  35. Snow, M. (1977). Gastrulation in the mouse: growth and regionalization of the epiblast. J Embryol Exp Morphol 42, 293–303.Google Scholar
  36. Solnica-Krezel, L. (2005). Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 15, R213–R228.CrossRefPubMedGoogle Scholar
  37. Solnica-Krezel, L., and Sepich, D.S. (2012). Gastrulation: making and shaping germ layers. Annu Rev Cell Dev Biol 28, 687–717.CrossRefPubMedGoogle Scholar
  38. Takaoka, K., and Hamada, H. (2012). Cell fate decisions and axis determination in the early mouse embryo. Development 139, 3–14.CrossRefPubMedGoogle Scholar
  39. Tam, P.P. (1989). Regionalisation of the mouse embryonic ectoderm: allocation of prospective ectodermal tissues during gastrulation. Development 107, 55–67.PubMedGoogle Scholar
  40. Tam, P.P., and Beddington, R.S. (1987). The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis. Development 99, 109–126.PubMedGoogle Scholar
  41. Tam, P.P.L., and Behringer, R.R. (1997). Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 68, 3–25.CrossRefPubMedGoogle Scholar
  42. Tam, P.P.L., and Loebel, D.A.F. (2007). Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 8, 368–381.CrossRefPubMedGoogle Scholar
  43. Tam, P.P.L., Loebel, D.A.F., and Tanaka, S.S. (2006). Building the mouse gastrula: signals, asymmetry and lineages. Curr Opin Genet Dev 16, 419–425.CrossRefPubMedGoogle Scholar
  44. Tam, P.P.L., Williams, E.A., and Chan, W.Y. (1993). Gastrulation in the mouse embryo: ultrastructural and molecular aspects of germ layer morphogenesis. Microsc Res Tech 26, 301–328.CrossRefPubMedGoogle Scholar
  45. Tang, F., Lao, K., and Surani, M.A. (2011). Development and applications of single-cell transcriptome analysis. Nat Meth 8, S6–S11.CrossRefGoogle Scholar
  46. Tang, W.W.C., Kobayashi, T., Irie, N., Dietmann, S., and Surani, M.A. (2016). Specification and epigenetic programming of the human germ line. Nat Rev Genet 17, 585–600.CrossRefPubMedGoogle Scholar
  47. Viotti, M., Nowotschin, S., and Hadjantonakis, A.K. (2014). SOX17 links gut endoderm morphogenesis and germ layer segregation. Nat Cell Biol 16, 1146–1156.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wang, L., and Chen, Y.G. (2016). Signaling control of differentiation of embryonic stem cells toward mesendoderm. J Mol Biol 428, 1409–1422.CrossRefPubMedGoogle Scholar
  49. Wells, J.M., and Melton, D.A. (1999). Vertebrate endoderm development. Annu Rev Cell Dev Biol 15, 393–410.CrossRefPubMedGoogle Scholar
  50. Wen, L., and Tang, F. (2014). Reconstructing complex tissues from singlecell analyses. Cell 157, 771–773.CrossRefPubMedGoogle Scholar
  51. Wolpert, L. (1992). Gastrulation and the evolution of development. Development 116 Supplement, 7−13.Google Scholar
  52. Wu, J., Huang, B., Chen, H., Yin, Q., Liu, Y., Xiang, Y., Zhang, B., Liu, B., Wang, Q., Xia, W., Li, W., Li, Y., Ma, J., Peng, X., Zheng, H., Ming, J., Zhang, W., Zhang, J., Tian, G., Xu, F., Chang, Z., Na, J., Yang, X., and Xie, W. (2016). The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657.CrossRefPubMedGoogle Scholar
  53. Zhang, B., Zheng, H., Huang, B., Li, W., Xiang, Y., Peng, X., Ming, J., Wu, X., Zhang, Y., Xu, Q., Liu, W., Kou, X., Zhao, Y., He, W., Li, C., Chen, B., Li, Y., Wang, Q., Ma, J., Yin, Q., Kee, K., Meng, A., Gao, S., Xu, F., Na, J., and Xie, W. (2016). Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553–557.CrossRefPubMedGoogle Scholar
  54. Zhu, Q., Song, L., Peng, G., Sun, N., Chen, J., Zhang, T., Sheng, N., Tang, W., Qian, C., Qiao, Y., Tang, K., Han, J.D.J., Li, J., and Jing, N. (2014). The transcription factor Pou3f1 promotes neural fate commitment via activation of neural lineage genes and inhibition of external signaling pathways. eLife 3, e02224.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina

Personalised recommendations