Advertisement

Science China Life Sciences

, Volume 60, Issue 4, pp 386–396 | Cite as

Identification of TWIST-interacting genes in prostate cancer

  • Peng Lyu
  • Shu-Dong Zhang
  • Hiu-Fung Yuen
  • Cian M. McCrudden
  • Qing Wen
  • Kwok-Wah Chan
  • Hang Fai KwokEmail author
Research Paper

Abstract

Prostate cancer is one of the most common cancers in men worldwide, and the number of diagnosed patients has dramatically increased in recent years. Currently, the clinical parameters used to diagnose prostate cancer, such as Gleason score, pathological tumor staging, and prostate-specific antigen (PSA) expression level, are considered insufficient to inform recommendation to guide clinical practice. Thus, identification of a novel biomarker is necessary. TWIST is one of the well-studied targets and is correlated with cancer invasion and metastasis in several human cancers. We have investigated two largest prostate cancer patient cohorts available in GEO database and found that TWIST expression is positive correlated with Gleason score and associated with poorer survival. By using a prostate cancer cohort and a prostate cancer cell line dataset, we have identified three potential downstream targets of TWIST, PPM1A, SRP72 and TBCB. TWIST’s prognostic capacity is lost when the gene is mutated. Further investigation in the prostate cancer cohort revealed that gene expression of SERPINA, STX7, PDIA2, FMP5, GP1BB, VGLL4, KCNMA1, SHMT2, SAA4 and DIDO1 influence the prognostic significance of TWIST and vice versa. Importantly, eight out of these ten genes are prognostic indicator by itself. In conclusion, our study has further confirmed that TWIST is a prognostic marker in prostate cancer, identified its potential downstream targets and genes that could possibly give additional prognostic value to predict TWIST-mediated prostate cancer progression.

Keywords

prostate cancer TWIST prognostic marker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Ms. Olivia Tong for providing feedback during the preparation of this manuscript. This study was supported by the University of Macau Multi-Year Research Grants (MYRG2015-00065- FHS), and the Macau Science and Technology Development Fund (FDCT 018-2015-A1) to Dr. Hang Fai Kwok research group.

References

  1. Altintas, D.M., Allioli, N., Decaussin, M., de Bernard, S., Ruffion, A., Samarut, J., and Vlaeminck-Guillem, V. (2013). Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer. PLoS ONE 8, e66278.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ansieau, S., Morel, A.P., Hinkal, G., Bastid, J., and Puisieux, A. (2010). TWISTing an embryonic transcription factor into an oncoprotein. Oncogene 29, 3173–3184.CrossRefPubMedGoogle Scholar
  3. Bloch, M., Ousingsawat, J., Simon, R., Schraml, P., Gasser, T.C., Mihatsch, M.J., Kunzelmann, K., and Bubendorf, L. (2007). KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene 26, 2525–2534.CrossRefPubMedGoogle Scholar
  4. Braig, S., and Bosserhoff, A.K. (2013). Death inducer-obliterator 1 (Dido1) is a BMP target gene and promotes BMP-induced melanoma progression. Oncogene 32, 837–848.CrossRefPubMedGoogle Scholar
  5. Chai, L., Li, J., and Lv, Z. (2016). An integrated analysis of cancer genes in thyroid cancer. Oncol Rep 35, 962–970.PubMedGoogle Scholar
  6. Chapman, M.H., Tidswell, R., Dooley, J.S., Sandanayake, N.S., Cerec, V., Deheragoda, M., Lee, A.J.X., Swanton, C., Andreola, F., and Pereira, S.P. (2012). Whole genome RNA expression profiling of endoscopic biliary brushings provides data suitable for biomarker discovery in cholangiocarcinoma. J Hepatol 56, 877–885.CrossRefPubMedGoogle Scholar
  7. Cimino, D., Fuso, L., Sfiligoi, C., Biglia, N., Ponzone, R., Maggiorotto, F., Russo, G., Cicatiello, L., Weisz, A., Taverna, D., Sismondi, P., and De Bortoli, M. (2008). Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. Int J Cancer 123, 1327–1338.CrossRefPubMedGoogle Scholar
  8. DeNicola, G.M., Chen, P.H., Mullarky, E., Sudderth, J.A., Hu, Z., Wu, D., Tang, H., Xie, Y., Asara, J.M., Huffman, K.E., Wistuba, I.I., Minna, J.D., DeBerardinis, R.J., and Cantley, L.C. (2015). NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet 47, 1475–1481.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dimberg, J., Ström, K., Löfgren, S., Zar, N., Hugander, A., and Matussek, A. (2011). Expression of the serine protease inhibitor serpinA3 in human colorectal adenocarcinomas. Oncol Lett 2, 413–418.PubMedPubMedCentralGoogle Scholar
  10. Gajula, R.P., Chettiar, S.T., Williams, R.D., Thiyagarajan, S., Kato, Y., Aziz, K., Wang, R., Gandhi, N., Wild, A.T., Vesuna, F., Ma, J., Salih, T., Cades, J., Fertig, E., Biswal, S., Burns, T.F., Chung, C.H., Rudin, C.M., Herman, J.M., Hales, R.K., Raman, V., An, S.S., and Tran, P.T. (2013). The twist box domain is required for Twist1-induced prostate cancer metastasis. Mol Cancer Res 11, 1387–1400.CrossRefPubMedGoogle Scholar
  11. Gutfeld, O., Prus, D., Ackerman, Z., Dishon, S., Linke, R.P., Levin, M., and Urieli-Shoval, S. (2006). Expression of serum amyloid A, in normal, dysplastic, and neoplastic human colonic mucosa: implication for a role in colonic tumorigenesis. J Histochem Cytochem 54, 63–73.CrossRefPubMedGoogle Scholar
  12. Hoek, K., Rimm, D.L., Williams, K.R., Zhao, H., Ariyan, S., Lin, A., Kluger, H.M., Berger, A.J., Cheng, E., Trombetta, E.S., Wu, T., Niinobe, M., Yoshikawa, K., Hannigan, G.E., and Halaban, R. (2004). Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 64, 5270–5282.CrossRefPubMedGoogle Scholar
  13. Jiang, W., Yao, F., He, J., Lv, B., Fang, W., Zhu, W., He, G., Chen, J., and He, J. (2015). Downregulation of VGLL4 in the progression of esophageal squamous cell carcinoma. Tumor Biol 36, 1289–1297.CrossRefGoogle Scholar
  14. Jiao, S., Wang, H., Shi, Z., Dong, A., Zhang, W., Song, X., He, F., Wang, Y., Zhang, Z., Wang, W., Wang, X., Guo, T., Li, P., Zhao, Y., Ji, H., Zhang, L., and Zhou, Z. (2014). A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25, 166–180.CrossRefPubMedGoogle Scholar
  15. Kang, Y., and Massagué, J. (2004). Epithelial-mesenchymal transitions. Cell 118, 277–279.CrossRefPubMedGoogle Scholar
  16. Kato, S., Hirano, A., Kato, M., Herz, F., and Ohama, E. (1993). Comparative study on the expression of stress-response protein (srp) 72, srp27, aB-crystallin and ubiquitin in brain tumours. An immunohistochemical investigation. Neuropathol Appl Neurobiol 19, 436–442.CrossRefPubMedGoogle Scholar
  17. Kim, D., Fiske, B.P., Birsoy, K., Freinkman, E., Kami, K., Possemato, R.L., Chudnovsky, Y., Pacold, M.E., Chen, W.W., Cantor, J.R., Shelton, L.M., Gui, D.Y., Kwon, M., Ramkissoon, S.H., Ligon, K.L., Kang, S.W., Snuderl, M., Vander Heiden, M.G., and Sabatini, D.M. (2015). SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kloth, J.N., Gorter, A., Fleuren, G.J., Oosting, J., Uljee, S., ter Haar, N., Dreef, E.J., Kenter, G.G., and Jordanova, E.S. (2008). Elevated expression of SerpinA1 and SerpinA3 in HLA-positive cervical carcinoma. J Pathol 215, 222–230.CrossRefPubMedGoogle Scholar
  19. Kwok, W.K., Ling, M.T., Lee, T.W., Lau, T.C.M., Zhou, C., Zhang, X., Chua, C.W., Chan, K.W., Chan, F.L., Glackin, C., Wong, Y.C., and Wang, X. (2005). Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res 65, 5153–5162.CrossRefPubMedGoogle Scholar
  20. Lee, G.Y., Haverty, P.M., Li, L., Kljavin, N.M., Bourgon, R., Lee, J., Stern, H., Modrusan, Z., Seshagiri, S., Zhang, Z., Davis, D., Stokoe, D., Settleman, J., de Sauvage, F.J., and Neve, R.M. (2014). Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Res 74, 3114–3126.CrossRefPubMedGoogle Scholar
  21. Leptin, M. (1991). twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev 5, 1568–1576.CrossRefPubMedGoogle Scholar
  22. Lu, X., An, H., Jin, R., Zou, M., Guo, Y., Su, P.F., Liu, D., Shyr, Y., and Yarbrough, W.G. (2014). PPM1A is a RelA phosphatase with tumor suppressor-like activity. Oncogene 33, 2918–2927.CrossRefPubMedGoogle Scholar
  23. Maestro, R., Tos, A.P.D., Hamamori, Y., Krasnokutsky, S., Sartorelli, V., Kedes, L., Doglioni, C., Beach, D.H., and Hannon, G.J. (1999). Twist is a potential oncogene that inhibits apoptosis. Genes Dev 13, 2207–2217.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nguyen, D.X., and Massagué, J. (2007). Genetic determinants of cancer metastasis. Nat Rev Genet 8, 341–352.CrossRefPubMedGoogle Scholar
  25. Olson, E.N., and Klein, W.H. (1994). bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev 8, 1–8.CrossRefPubMedGoogle Scholar
  26. Qin, Q., Xu, Y., He, T., Qin, C., and Xu, J. (2012). Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res 22, 90–106.CrossRefPubMedGoogle Scholar
  27. Rayala, S.K., Martin, E., Sharina, I.G., Molli, P.R., Wang, X., Jacobson, R., Murad, F., and Kumar, R. (2007). Dynamic interplay between nitration and phosphorylation of tubulin cofactor B in the control of microtubule dynamics. Proc Natl Acad Sci USA 104, 19470–19475.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ren, Y., Wang, H., Lu, D., Xie, X., Chen, X., Peng, J., Hu, Q., Shi, G., and Liu, S. (2014). Expression of serum amyloid A in uterine cervical cancer. Diagn Pathol 9, 16.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rosivatz, E., Becker, I., Specht, K., Fricke, E., Luber, B., Busch, R., Höfler, H., and Becker, K.F. (2002). Differential expression of the epithelial-mesenchymal transition regulators Snail, SIP1, and Twist in gastric cancer.Google Scholar
  30. Am J Pathol 161, 1881–1891.Google Scholar
  31. Sboner, A., Demichelis, F., Calza, S., Pawitan, Y., Setlur, S.R., Hoshida, Y., Perner, S., Adami, H.O., Fall, K., Mucci, L.A., Kantoff, P.W., Stampfer, M., Andersson, S.O., Varenhorst, E., Johansson, J.E., Gerstein, M.B., Golub, T.R., Rubin, M.A., and Andrén, O. (2010). Molecular sampling of prostate cancer: a dilemma for predicting disease progression. BMC Med Genomics 3, 8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Selth, L.A., Das, R., Townley, S.L., Coutinho, I., Hanson, A.R., Centenera, M.M., Stylianou, N., Sweeney, K., Soekmadji, C., Jovanovic, L., Nelson, C.C., Zoubeidi, A., Butler, L.M., Goodall, G.J., Hollier, B.G., Gregory, P.A., and Tilley, W.D. (2016). A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene in press doi: 10.1038/onc.2016.185.Google Scholar
  33. Siegel, R.L., Miller, K.D., and Jemal, A. (2016). Cancer statistics, 2016. CA-A Cancer J Clinicians 66, 7–30.CrossRefGoogle Scholar
  34. Strömberg, S., Agnarsdóttir, M., Magnusson, K., Rexhepaj, E., Bolander, Å., Lundberg, E., Asplund, A., Ryan, D., Rafferty, M., Gallagher, W.M., Uhlen, M., Bergqvist, M., and Ponten, F. (2009). Selective expression of Syntaxin-7 protein in benign melanocytes and malignant melanoma. J Proteome Res 8, 1639–1646.CrossRefPubMedGoogle Scholar
  35. Vanaja, D.K., Ballman, K.V., Morlan, B.W., Cheville, J.C., Neumann, R.M., Lieber, M.M., Tindall, D.J., and Young, C.Y.F. (2006). PDLIM4 repression by hypermethylation as a potential biomarker for prostate cancer. Clin Cancer Res 12, 1128–1136.CrossRefPubMedGoogle Scholar
  36. Vanaja, D.K., Cheville, J.C., Iturria, S.J., and Young, C.Y. (2003). Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res 63, 3877–3882.PubMedGoogle Scholar
  37. Vanaja, D.K., Ehrich, M., Van den Boom, D., Cheville, J.C., Karnes, R.J., Tindall, D.J., Cantor, C.R., and Young, C.Y.F. (2009). Hypermethylation of genes for diagnosis and risk stratification of prostate cancer. Cancer Investig 27, 549–560.CrossRefGoogle Scholar
  38. Villavicencio, E.H., Yoon, J.W., Frank, D.J., Fü chtbauer, E.M., Walterhouse, D.O., and Iannaccone, P.M. (2002). Cooperative E-box regulation of human GLI1 by TWIST and USF. Genesis 32, 247–258.CrossRefPubMedGoogle Scholar
  39. Wang, G., Lu, X., Dey, P., Deng, P., Wu, C.C., Jiang, S., Fang, Z., Zhao, K., Konaparthi, R., Hua, S., Zhang, J., Li-Ning-Tapia, E.M., Kapoor, A., Wu, C.J., Patel, N.B., Guo, Z., Ramamoorthy, V., Tieu, T.N., Heffernan, T., Zhao, D., Shang, X., Khadka, S., Hou, P., Hu, B., Jin, E.J., Yao, W., Pan, X., Ding, Z., Shi, Y., Li, L., Chang, Q., Troncoso, P., Logothetis, C.J., McArthur, M.J., Chin, L., Wang, Y.A., and DePinho, R.A. (2016). Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov 6, 80–95.CrossRefPubMedGoogle Scholar
  40. Wang, X., Ling, M.T., Guan, X.Y., Tsao, S.W., Cheung, H.W., Lee, D.T., and Wong, Y.C. (2004). Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene 23, 474–482.CrossRefPubMedGoogle Scholar
  41. Wu, C.L., Schroeder, B.E., Ma, X.J., Cutie, C.J., Wu, S., Salunga, R., Zhang, Y., Kattan, M.W., Schnabel, C.A., Erlander, M.G., and McDougal, W.S. (2013). Development and validation of a 32-gene prognostic index for prostate cancer progression. Proc Natl Acad Sci USA 110, 6121–6126.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wu, X., Deng, L., Tang, D., Ying, G., Yao, X., Liu, F., and Liang, G. (2016). miR-615-5p prevents proliferation and migration through negatively regulating serine hydromethyltransferase 2 (SHMT2) in hepatocellular carcinoma. Tumor Biol 37, 6813–6821.CrossRefGoogle Scholar
  43. Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R.A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939.CrossRefPubMedGoogle Scholar
  44. Zhang, L., Yang, S., Chen, X., Stauffer, S., Yu, F., Lele, S.M., Fu, K., Datta, K., Palermo, N., Chen, Y., and Dong, J. (2015). The Hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells. Mol Cell Biol 35, 1350–1362.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhang, W., Gao, Y., Li, P., Shi, Z., Guo, T., Li, F., Han, X., Feng, Y., Zheng, C., Wang, Z., Li, F., Chen, H., Zhou, Z., Zhang, L., and Ji, H. (2014). VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res 24, 331–343.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zhou, J., Cheng, Y., Tang, L., Martinka, M., and Kalia, S. (2016). Up-regulation of SERPINA3 correlates with high mortality of melanoma patients and increased migration and invasion of cancer cells. Oncotarget in press doi: 10.18632/oncotarget.9409.Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2017

Authors and Affiliations

  • Peng Lyu
    • 1
  • Shu-Dong Zhang
    • 2
  • Hiu-Fung Yuen
    • 3
  • Cian M. McCrudden
    • 4
  • Qing Wen
    • 5
  • Kwok-Wah Chan
    • 6
  • Hang Fai Kwok
    • 1
    Email author
  1. 1.Faculty of Health SciencesUniversity of MacauMacauChina
  2. 2.Northern Ireland Centre for Stratified Medicine, C-TRIC Building, Altnagelvin Hospital CampusUlster UniversityLondonderryUK
  3. 3.Institute of Molecular and Cellular BiologyAgency for Science, Technology and ResearchSingaporeSingapore
  4. 4.School of PharmacyQueen’s University of BelfastBelfastUK
  5. 5.Centre for Cancer Research & Cell Biology, School of Medicine, Dentistry and Biomedical SciencesQueen’s University BelfastBelfastUK
  6. 6.Department of Pathology, Queen Mary HospitalUniversity of Hong KongHong KongChina

Personalised recommendations