Visualization of reticulophagy in living cells using an endoplasmic reticulum-targeted p62 mutant
- 123 Downloads
- 3 Citations
Abstract
Reticulophagy is a type of selective autophagy in which protein aggregate-containing and/or damaged endoplasmic reticulum (ER) fragments are engulfed for lysosomal degradation, which is important for ER homeostasis. Several chemical drugs and mutant proteins that promote protein aggregate formation within the ER lumen can efficiently induce reticulophagy in mammalian cells. However, the exact mechanism and cellular localization of reticulophagy remain unclear. In this report, we took advantage of the self-oligomerization property of p62/SQSTM1, an adaptor for selective autophagy, and developed a novel reticulophagy system based on an ER-targeted p62 mutant to investigate the process of reticulophagy in living cells. LC3 conversion analysis via western blot suggested that p62 mutant aggregate-induced ER stress triggered a cellular autophagic response. Confocal imaging showed that in cells with moderate aggregation conditions, the aggregates of ER-targeted p62 mutants were efficiently sequestered by autophagosomes, which was characterized by colocalization with the autophagosome precursor marker ATG16L1, the omegasome marker DFCP1, and the late autophagosomal marker LC3/GATE-16. Moreover, time-lapse imaging data demonstrated that the LC3- or DFCP1-positive protein aggregates are tightly associated with the reticular structures of the ER, thereby suggesting that reticulophagy occurs at the ER and that omegasomes may be involved in this process.
Keywords
reticulophagy protein aggregates endoplasmic reticulum (ER) LC3 p62 autophagosomes omegasomesPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
We thank Dr. Nicholas T. Ktistakis (Babraham Institute) for providing mRFP-LC3, Dr. Roger Tsien (University of California) for pRSETB-mRFP1, pRSETB-mCherry, and mt-roGFP1, Dr. David Piston (Vanderbilt University School of Medicine) for pmCerulean-C1 and mCitrine-N1, Dr. Joel Swanson (University of Michigan Medical School) for pmCitrine-C1, Dr. Peter Verveer (Max Planck Institute of Molecular Physiology) for pEGFR-EGFP, Dr. Jun Chu (Britton Chance Center for Biomedical Photonics) for mLumin-N1, and Dr. Noboru Mizushima (Tokyo Metropolitan Institute of Medical Science) for ATG5−/− MEFs. We thank Scientific Imaging facility of Fred Hutchinson Cancer Research Center (USA) for part of the confocal imaging experiments. We also thank the Analytical and Testing Center of Huazhong University of Science and Technology for spectral measurements. This work was supported by the Major Research Plan of the National Natural Science Foundation of China (91442201), the National Science Fund for Distinguished Young Scholars (81625012), and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (61421064).
Supplementary material
References
- Axe, E.L., Walker, S.A., Manifava, M., Chandra, P., Roderick, H.L., Habermann, A., Griffiths, G., and Ktistakis, N.T. (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182, 685–701.CrossRefPubMedPubMedCentralGoogle Scholar
- Bernales, S., Schuck, S., and Walter, P. (2007). ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3, 285–287.CrossRefPubMedGoogle Scholar
- Bjørkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H., and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin- induced cell death. J Cell Biol 171, 603–614.CrossRefPubMedPubMedCentralGoogle Scholar
- Braakman, I., and Bulleid, N.J. (2011). Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem 80, 71–99.CrossRefPubMedGoogle Scholar
- Cebollero, E., Reggiori, F., and Kraft, C. (2012). Reticulophagy and ribophagy: regulated degradation of protein production factories. Int J Cell Biol 2012, 1–9.CrossRefGoogle Scholar
- Chu, J., Zhang, Z., Zheng, Y., Yang, J., Qin, L., Lu, J., Huang, Z.L., Zeng, S., and Luo, Q. (2009). A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Biosens Bioelectron 25, 234–239.CrossRefPubMedGoogle Scholar
- Cross, B.C.S., Sinning, I., Luirink, J., and High, S. (2009). Delivering proteins for export from the cytosol. Nat Rev Mol Cell Biol 10, 255–264.CrossRefPubMedGoogle Scholar
- Ding, W.X., Ni, H.M., Gao, W., Hou, Y.F., Melan, M.A., Chen, X., Stolz, D.B., Shao, Z.M., and Yin, X.M. (2007). Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 282, 4702–4710.CrossRefPubMedGoogle Scholar
- Fujita, E., Kouroku, Y., Isoai, A., Kumagai, H., Misutani, A., Matsuda, C., Hayashi, Y.K., and Momoi, T. (2007). Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum Mol Genet 16, 618–629.CrossRefPubMedGoogle Scholar
- Giles, L.M., Chen, J., Li, L., and Chin, L.S. (2008). Dystonia-associated mutations cause premature degradation of torsinA protein and cell-typespecific mislocalization to the nuclear envelope. Hum Mol Genet 17, 2712–2722.CrossRefPubMedPubMedCentralGoogle Scholar
- Giles, L.M., Li, L., and Chin, L.S. (2009). TorsinA protein degradation and autophagy in DYT1 dystonia. Autophagy 5, 82–84.CrossRefPubMedPubMedCentralGoogle Scholar
- Ichimura, Y., Kumanomidou, T., Sou, Y., Mizushima, T., Ezaki, J., Ueno, T., Kominami, E., Yamane, T., Tanaka, K., and Komatsu, M. (2008). Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283, 22847–22857.CrossRefPubMedGoogle Scholar
- Itakura, E., and Mizushima, N. (2011). p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol 192, 17–27.CrossRefPubMedPubMedCentralGoogle Scholar
- Khaminets, A., Heinrich, T., Mari, M., Grumati, P., Huebner, A.K., Akutsu, M., Liebmann, L., Stolz, A., Nietzsche, S., Koch, N., Mauthe, M., Katona, I., Qualmann, B., Weis, J., Reggiori, F., Kurth, I., Hübner, C.A., and Dikic, I. (2015). Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354–358.CrossRefPubMedGoogle Scholar
- Kim, P.K., Mullen, R.T., Schumann, U., and Lippincott-Schwartz, J. (2006). The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J Cell Biol 173, 521–532.CrossRefPubMedPubMedCentralGoogle Scholar
- Klionsky, D.J., Cuervo, A.M., Dunn, W.A., Jr., Levine, B., van der Klei, I., and Seglen, P.O. (2007). How shall I eat thee? Autophagy 3, 413–416.CrossRefPubMedGoogle Scholar
- Kouroku, Y., Fujita, E., Tanida, I., Ueno, T., Isoai, A., Kumagai, H., Ogawa, S., Kaufman, R.J., Kominami, E., and Momoi, T. (2007). ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14, 230–239.CrossRefPubMedGoogle Scholar
- Kruse, K.B., Brodsky, J.L., and McCracken, A.A. (2006). Autophagy: an ER protein quality control process. Autophagy 2, 135–137.CrossRefPubMedGoogle Scholar
- Kuznetsov, A.I., Frorip, A., Kozlova, J., Nagirnyi, V., Ots-Rosenberg, M., Romet, I., and Sünter, A. (2015). Visible fluorescence of biological fluids as a renal failure marker: new integrative approach. J Innov Opt Health Sci 08, 1550030.CrossRefGoogle Scholar
- Lamark, T., Perander, M., Outzen, H., Kristiansen, K., Øvervatn, A., Michaelsen, E., Bjørkøy, G., and Johansen, T. (2003). Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 278, 34568–34581.CrossRefPubMedGoogle Scholar
- Lipatova, Z., and Segev, N. (2015). A role for macro-ER-phagy in ER quality control. PLoS Genet 11, e1005390.CrossRefPubMedPubMedCentralGoogle Scholar
- Liu, Y., and He, B. (2015). Quantitative of pesticide residue on the surface of navel orange by confocal microscopy Raman spectrometer. J Innov Opt Health Sci 08, 1550001.CrossRefGoogle Scholar
- Lorenz, H., Hailey, D.W., Wunder, C., and Lippincott-Schwartz, J. (2006). The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat Protoc 1, 276–279.CrossRefPubMedGoogle Scholar
- Matlin, K.S. (2011). Spatial expression of the genome: the signal hypothesis at forty. Nat Rev Mol Cell Biol 12, 333–340.CrossRefPubMedGoogle Scholar
- Meng, C., Wu, S., and Xing, D. (2011). Real-time fluorescence imaging of Sirt1 cytosolic translocation under the treatment of growth factor deprivation. J Innov Opt Health Sci 04, 133–141.CrossRefGoogle Scholar
- Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., Shiosaka, S., Hammarback, J.A., Urano, F., and Imaizumi, K. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26, 9220–9231.CrossRefPubMedPubMedCentralGoogle Scholar
- Okamoto, K. (2014). Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 205, 435–445.CrossRefPubMedPubMedCentralGoogle Scholar
- Perlmutter, D.H. (2006). The role of autophagy in alpha-1-antitrypsin deficiency: a specific cellular response in genetic diseases associated with aggregation-prone proteins. Autophagy 2, 258–263.CrossRefPubMedGoogle Scholar
- Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8, 785–786.CrossRefGoogle Scholar
- Reggiori, F., and Tooze, S.A. (2009). The EmERgence of autophagosomes. Dev Cell 17, 747–748.CrossRefPubMedGoogle Scholar
- Ron, D., and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8, 519–529.CrossRefPubMedGoogle Scholar
- Seibenhener, M.L., Geetha, T., and Wooten, M.W. (2007). Sequestosome 1/p62—more than just a scaffold. FEBS Lett 581, 175–179.CrossRefPubMedGoogle Scholar
- Silvestri, L., Mascaro, A.L.A., Lotti, J., Sacconi, L., and Pavone, F.S. (2013). Advanced optical techniques to explore brain structure and function. J Innov Opt Health Sci 06, 1230002.CrossRefGoogle Scholar
- Teckman, J.H., and Perlmutter, D.H. (2000). Retention of mutant alpha(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am J Physiol Gastrointest Liver Physiol 279, G961–G974.PubMedGoogle Scholar
- Voeltz, G.K., Rolls, M.M., and Rapoport, T.A. (2002). Structural organization of the endoplasmic reticulum. EMBO Rep 3, 944–950.CrossRefPubMedPubMedCentralGoogle Scholar
- Wang, L., Chen, M., Yang, J., and Zhang, Z. (2013). LC3 fluorescent puncta in autophagosomes or in protein aggregates can be distinguished by FRAP analysis in living cells. Autophagy 9, 756–769.CrossRefPubMedPubMedCentralGoogle Scholar
- Weidberg, H., Shvets, E., and Elazar, Z. (2011). Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80, 125–156.CrossRefPubMedGoogle Scholar
- Weidberg, H., Shvets, E., Shpilka, T., Shimron, F., Shinder, V., and Elazar, Z. (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29, 1792–1802.CrossRefPubMedPubMedCentralGoogle Scholar
- Ylä-Anttila, P., Vihinen, H., Jokitalo, E., and Eskelinen, E.L. (2009). 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180–1185.CrossRefPubMedGoogle Scholar
- Yorimitsu, T., and Klionsky, D.J. (2007). Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol 17, 279–285.CrossRefPubMedGoogle Scholar