Science China Life Sciences

, Volume 58, Issue 4, pp 343–351 | Cite as

Using zebrafish as the model organism to understand organ regeneration

  • WenChao Shi
  • ZhiBing Fang
  • Li Li
  • LingFei LuoEmail author
Open Access
Review Special Topic: Model Animals and Their Applications


The limited regenerative capacity of several organs, such as central nervous system (CNS), heart and limb in mammals makes related major diseases quite difficult to recover. Therefore, dissection of the cellular and molecular mechanisms underlying organ regeneration is of great scientific and clinical interests. Tremendous progression has already been made after extensive investigations using several model organisms for decades. Unfortunately, distance to the final achievement of the goal still remains. Recently, zebrafish became a popular model organism for the deep understanding of regeneration based on its powerful regenerative capacity, in particular the organs that are limitedly regenerated in mammals. Additionally, zebrafish are endowed with other advantages good for the study of organ regeneration. This review summarizes the recent progress in the study of zebrafish organ regeneration, in particular regeneration of fin, heart, CNS, and liver as the representatives. We also discuss reasons of the reduced regenerative capacity in higher vertebrate, the roles of inflammation during regeneration, and the difference between organogenesis and regeneration.


organ regeneration zebrafish fin heart liver CNS 


  1. 1.
    Poss KD. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet, 2010, 11: 710–722PubMedPubMedCentralGoogle Scholar
  2. 2.
    Tal TL, Franzosa JA, Tanguay RL. Molecular signaling networks that choreograph epimorphic fin regeneration in zebrafish — a mini-review. Gerontology, 2010, 56: 231–240PubMedPubMedCentralGoogle Scholar
  3. 3.
    Goessling W, North TE. Repairing quite swimmingly: advances in regenerative medicine using zebrafish. Dis Model Mech, 2014, 7: 769–776PubMedPubMedCentralGoogle Scholar
  4. 4.
    Grunwald DJ, Eisen JS. Headwaters of the zebrafish—emergence of a new model vertebrate. Nat Rev Genet, 2002, 3: 717–724PubMedGoogle Scholar
  5. 5.
    Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C. A genetic screen for mutations affecting embryogenesis in zebrafish. Development, 1996, 123: 37–46PubMedGoogle Scholar
  6. 6.
    Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nüsslein-Volhard C. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development, 1996, 123: 1–36PubMedGoogle Scholar
  7. 7.
    Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM, Meiler SE, Mohideen MA, Neuhauss SC, Solnica-Krezel L, Schier AF, Zwartkruis F, Stemple DL, Malicki J, Driever W, Fishman MC. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development, 1996, 123: 285–292PubMedGoogle Scholar
  8. 8.
    Brockerhoff SE, Fadool JM. Genetics of photoreceptor degeneration and regeneration in zebrafish. Cell Mol Life Sci, 2011, 68: 651–659PubMedPubMedCentralGoogle Scholar
  9. 9.
    Becker T, Becker CG. Axonal regeneration in zebrafish. Curr Opin Neurobiol, 2014, 27C: 186–191Google Scholar
  10. 10.
    Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science, 2002, 298: 2188–2190PubMedGoogle Scholar
  11. 11.
    Poss KD, Keating MT, Nechiporuk A. Tales of regeneration in zebrafish. Dev Dyn, 2003, 226: 202–210PubMedGoogle Scholar
  12. 12.
    McCampbell KK, Wingert RA. New tides: using zebrafish to study renal regeneration. Transl Res, 2014, 163: 109–122PubMedPubMedCentralGoogle Scholar
  13. 13.
    Kizil C, Kaslin J, Kroehne V, Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol, 2012, 72: 429–461PubMedGoogle Scholar
  14. 14.
    Kikuchi K. Advances in understanding the mechanism of zebrafish heart regeneration. Stem Cell Res, 2014, 13: 542–555PubMedGoogle Scholar
  15. 15.
    Matrone G, Taylor JM, Wilson KS, Baily J, Love GD, Girkin JM, Mullins JJ, Tucker CS, Denvir MA. Laser-targeted ablation of the zebrafish embryonic ventricle: a novel model of cardiac injury and repair. Int J Cardiol, 2013, 168: 3913–3919PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kurita R, Sagara H, Aoki Y, Link BA, Arai K, Watanabe S. Suppression of lens growth by alphaA-crystallin promoter-driven expression of diphtheria toxin results in disruption of retinal cell organization in zebrafish. Dev Biol, 2003, 255: 113–127PubMedGoogle Scholar
  17. 17.
    Slanchev K, Stebler J, Cueva-Mendez G, Raz E. Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci USA, 2005, 102: 4074–4079PubMedPubMedCentralGoogle Scholar
  18. 18.
    Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, Merzlyak EM, Shkrob MA, Lukyanov S, Lukyanov KA. A genetically encoded photosensitizer. Nat Biotechnol, 2006, 24: 95–99PubMedGoogle Scholar
  19. 19.
    Pisharath H. Validation of nitroreductase, a prodrug-activating enzyme, mediated cell death in embryonic zebrafish (Danio rerio). Comp Med, 2007, 57: 241–246PubMedGoogle Scholar
  20. 20.
    Curado S, Stainier DY, Anderson RM. Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat Protoc, 2008, 3: 948–954PubMedPubMedCentralGoogle Scholar
  21. 21.
    Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn, 2007, 236: 1025–1035PubMedGoogle Scholar
  22. 22.
    Lush ME, Piotrowski T. Sensory hair cell regeneration in the zebrafish lateral line. Dev Dyn, 2014, 243: 1187–1202PubMedPubMedCentralGoogle Scholar
  23. 23.
    Nechiporuk A, Keating MT. A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration. Development, 2002, 129: 2607–2617PubMedGoogle Scholar
  24. 24.
    Akimenko MA, Mari-Beffa M, Becerra J, Geraudie J. Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn, 2003, 226: 190–201PubMedGoogle Scholar
  25. 25.
    Iovine MK. Conserved mechanisms regulate outgrowth in zebrafish fins. Nat Chem Biol, 2007, 3: 613–618PubMedGoogle Scholar
  26. 26.
    Singh SP, Holdway JE, Poss KD. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell, 2012, 22: 879–886PubMedPubMedCentralGoogle Scholar
  27. 27.
    Geurtzen K, Knopf F, Wehner D, Huitema LF, Schulte-Merker S, Weidinger G. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull. Development, 2014, 141: 2225–2234PubMedGoogle Scholar
  28. 28.
    Kawakami Y, Rodriguez EC, Raya M, Kawakami H, Marti M, Dubova I, Izpisua Belmonte JC. Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev, 2006, 20: 3232–3237PubMedPubMedCentralGoogle Scholar
  29. 29.
    Poss KD, Shen J, Keating MT. Induction of lef1 during zebrafish fin regeneration. Dev Dyn, 2000, 219: 282–286PubMedGoogle Scholar
  30. 30.
    Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N, Moon RT. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development, 2007, 134: 479–489PubMedGoogle Scholar
  31. 31.
    Mathew LK, Sengupta S, Kawakami A, Andreasen EA, Lohr CV, Loynes CA, Renshaw SA, Peterson RT, Tanguay RL. Unraveling tissue regeneration pathways using chemical genetics. J Biol Chem, 2007, 282: 35202–35210PubMedGoogle Scholar
  32. 32.
    Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, Roth MG, Amatruda JF, Chen C, Lum L. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol, 2009, 5: 100–107PubMedPubMedCentralGoogle Scholar
  33. 33.
    Lee Y, Grill S, Sanchez A, Murphy-Ryan M, Poss KD. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development, 2005, 132: 5173–5183PubMedGoogle Scholar
  34. 34.
    Whitehead GG, Makino S, Lien CL, Keating MT. fgf20 is essential for initiating zebrafish fin regeneration. Science, 2005, 310: 1957–1960PubMedGoogle Scholar
  35. 35.
    Geraudie J, Monnot MJ, Brulfert A, Ferretti P. Caudal fin regeneration in wild type and long-fin mutant zebrafish is affected by retinoic acid. Int J Dev Biol, 1995, 39: 373–381PubMedGoogle Scholar
  36. 36.
    White JA, Boffa MB, Jones B, Petkovich M. A zebrafish retinoic acid receptor expressed in the regenerating caudal fin. Development, 1994, 120: 1861–1872PubMedGoogle Scholar
  37. 37.
    Wehner D, Cizelsky W, Vasudevaro MD, Ozhan G, Haase C, Kagermeier-Schenk B, Roder A, Dorsky RI, Moro E, Argenton F, Kühl M, Weidinger G. Wnt/beta-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin. Cell Rep, 2014, 6: 467–481PubMedGoogle Scholar
  38. 38.
    Thatcher EJ, Paydar I, Anderson KK, Patton JG. Regulation of zebrafish fin regeneration by microRNAs. Proc Natl Acad Sci USA, 2008, 105: 18384–18389PubMedPubMedCentralGoogle Scholar
  39. 39.
    Yin VP, Thomson JM, Thummel R, Hyde DR, Hammond SM, Poss KD. Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish. Genes Dev, 2008, 22: 728–733PubMedPubMedCentralGoogle Scholar
  40. 40.
    Yin VP, Poss KD. New regulators of vertebrate appendage regeneration. Curr Opin Genet Dev, 2008, 18: 381–386PubMedPubMedCentralGoogle Scholar
  41. 41.
    Varga M, Sass M, Papp D, Takacs-Vellai K, Kobolak J, Dinnyes A, Klionsky DJ, Vellai T. Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ, 2014, 21: 547–556PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kujawski S, Lin W, Kitte F, Bormel M, Fuchs S, Arulmozhivarman G, Vogt S, Theil D, Zhang Y, Antos CL. Calcineurin regulates coordinated outgrowth of zebrafish regenerating fins. Dev Cell, 2014, 28: 573–587PubMedGoogle Scholar
  43. 43.
    Gupta V, Poss KD. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature, 2012, 484: 479–484PubMedPubMedCentralGoogle Scholar
  44. 44.
    Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 2010, 464: 606–609PubMedPubMedCentralGoogle Scholar
  45. 45.
    Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature, 2010, 464: 601–605PubMedPubMedCentralGoogle Scholar
  46. 46.
    Gonzalez-Rosa JM, Peralta M, Mercader N. Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev Biol, 2012, 370: 173–186PubMedGoogle Scholar
  47. 47.
    Kikuchi K, Gupta V, Wang J, Holdway JE, Wills AA, Fang Y, Poss KD. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development, 2011, 138: 2895–2902PubMedPubMedCentralGoogle Scholar
  48. 48.
    Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin YF, Ocorr K, Kang G, Chen J, Stainier DY, Yelon D, Chi NC. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature, 2013, 498: 497–501PubMedPubMedCentralGoogle Scholar
  49. 49.
    Itou J, Oishi I, Kawakami H, Glass TJ, Richter J, Johnson A, Lund TC, Kawakami Y. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development, 2012, 139: 4133–4142PubMedGoogle Scholar
  50. 50.
    Wang J, Karra R, Dickson AL, Poss KD. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol, 2013, 382: 427–435PubMedGoogle Scholar
  51. 51.
    Zhao L, Borikova AL, Ben-Yair R, Guner-Ataman B, MacRae CA, Lee RT, Burns CG, Burns CE. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci USA, 2014, 111: 1403–1408PubMedPubMedCentralGoogle Scholar
  52. 52.
    Jopling C, Sune G, Faucherre A, Fabregat C, Izpisua Belmonte JC. Hypoxia induces myocardial regeneration in zebrafish. Circulation, 2012, 126: 3017–3027PubMedGoogle Scholar
  53. 53.
    Han P, Zhou XH, Chang N, Xiao CL, Yan S, Ren H, Yang XZ, Zhang ML, Wu Q, Tang B, Diao JP, Zhu X, Zhang C, Li CY, Cheng H, Xiong JW. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res, 2014, 24: 1091–1107PubMedPubMedCentralGoogle Scholar
  54. 54.
    Yin VP, Lepilina A, Smith A, Poss KD. Regulation of zebrafish heart regeneration by miR-133. Dev Biol, 2012, 365: 319–327PubMedPubMedCentralGoogle Scholar
  55. 55.
    Becker CG, Becker T. Adult zebrafish as a model for successful central nervous system regeneration. Restor Neurol Neurosci, 2008, 26: 71–80PubMedGoogle Scholar
  56. 56.
    Fleisch VC, Fraser B, Allison WT. Investigating regeneration and functional integration of CNS neurons: lessons from zebrafish genetics and other fish species. Biochim Biophys Acta, 2011, 1812: 364–380PubMedGoogle Scholar
  57. 57.
    Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M. Regeneration of the adult zebrafish brain from neurogenic radial gliatype progenitors. Development, 2011, 138: 4831–4841PubMedGoogle Scholar
  58. 58.
    Kishimoto N, Shimizu K, Sawamoto K. Neuronal regeneration in a zebrafish model of adult brain injury. Dis Model Mech, 2012, 5: 200–209PubMedPubMedCentralGoogle Scholar
  59. 59.
    Zou S, Tian C, Ge S, Hu B. Neurogenesis of retinal ganglion cells is not essential to visual functional recovery after optic nerve injury in adult zebrafish. PLoS One, 2013, 8: e57280PubMedPubMedCentralGoogle Scholar
  60. 60.
    Fujikawa C, Nagashima M, Mawatari K, Kato S. HSP70 gene expression in the zebrafish retina after optic nerve injury: a comparative study under heat shock stresses. Adv Exp Med Biol, 2012, 723: 663–668PubMedGoogle Scholar
  61. 61.
    Nagashima M, Fujikawa C, Mawatari K, Mori Y, Kato S. HSP70, the earliest-induced gene in the zebrafish retina during optic nerve regeneration: its role in cell survival. Neurochem Int, 2011, 58: 888–895PubMedGoogle Scholar
  62. 62.
    Kato S, Matsukawa T, Koriyama Y, Sugitani K, Ogai K. A molecular mechanism of optic nerve regeneration in fish: the retinoid signaling pathway. Prog Retin Eye Res, 2013, 37: 13–30PubMedGoogle Scholar
  63. 63.
    Goldshmit Y, Sztal TE, Jusuf PR, Hall TE, Nguyen-Chi M, Currie PD. Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J Neurosci, 2012, 32: 7477–7492PubMedGoogle Scholar
  64. 64.
    Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol, 1997, 377: 577–595PubMedGoogle Scholar
  65. 65.
    Dias TB, Yang YJ, Ogai K, Becker T, Becker CG. Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J Neurosci, 2012, 32: 3245–3252PubMedGoogle Scholar
  66. 66.
    Kuscha V, Frazer SL, Dias TB, Hibi M, Becker T, Becker CG. Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish. J Comp Neurol, 2012, 520: 3604–3616PubMedGoogle Scholar
  67. 67.
    Fawcett JW, Schwab ME, Montani L, Brazda N, Muller HW. Defeating inhibition of regeneration by scar and myelin components. Handb Clin Neurol, 2012, 109: 503–522PubMedGoogle Scholar
  68. 68.
    Becker CG, Becker T. Repellent guidance of regenerating optic axons by chondroitin sulfate glycosaminoglycans in zebrafish. J Neurosci, 2002, 22: 842–853PubMedGoogle Scholar
  69. 69.
    Schweitzer J, Gimnopoulos D, Lieberoth BC, Pogoda HM, Feldner J, Ebert A, Schachner M, Becker T, Becker CG. Contactin1a expression is associated with oligodendrocyte differentiation and axonal regeneration in the central nervous system of zebrafish. Mol Cell Neurosci, 2007, 35: 194–207PubMedGoogle Scholar
  70. 70.
    Schweitzer J, Becker T, Becker CG, Schachner M. Expression of protein zero is increased in lesioned axon pathways in the central nervous system of adult zebrafish. Glia, 2003, 41: 301–317PubMedGoogle Scholar
  71. 71.
    Kusik BW, Hammond DR, Udvadia AJ. Transcriptional regulatory regions of gap43 needed in developing and regenerating retinal ganglion cells. Dev Dyn, 2010, 239: 482–495PubMedPubMedCentralGoogle Scholar
  72. 72.
    Becker CG, Lieberoth BC, Morellini F, Feldner J, Becker T, Schachner M. L1.1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci, 2004, 24: 7837–7842PubMedGoogle Scholar
  73. 73.
    Veldman MB, Bemben MA, Thompson RC, Goldman D. Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Dev Biol, 2007, 312: 596–612PubMedGoogle Scholar
  74. 74.
    Liu D, Yu Y, Schachner M. Ptena, but not Ptenb, reduces regeneration after spinal cord injury in adult zebrafish. Exp Neurol, 2014, 261C: 196–205Google Scholar
  75. 75.
    Elsaeidi F, Bemben MA, Zhao XF, Goldman D. Jak/Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq. J Neurosci, 2014, 34: 2632–2644PubMedPubMedCentralGoogle Scholar
  76. 76.
    Becker CG, Schweitzer J, Feldner J, Schachner M, Becker T. Tenascin-R as a repellent guidance molecule for newly growing and regenerating optic axons in adult zebrafish. Mol Cell Neurosci, 2004, 26: 376–389PubMedGoogle Scholar
  77. 77.
    Graciarena M, Dambly-Chaudiere C, Ghysen A. Dynamics of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. Proc Natl Acad Sci USA, 2014, 111: 1610–1615PubMedPubMedCentralGoogle Scholar
  78. 78.
    Bernardos RL, Barthel LK, Meyers JR, Raymond PA. Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells. J Neurosci, 2007, 27: 7028–7040PubMedGoogle Scholar
  79. 79.
    Fimbel SM, Montgomery JE, Burket CT, Hyde DR. Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J Neurosci, 2007, 27: 1712–1724PubMedGoogle Scholar
  80. 80.
    Thummel R, Kassen SC, Enright JM, Nelson CM, Montgomery JE, Hyde DR. Characterization of Muller glia and neuronal progenitors during adult zebrafish retinal regeneration. Exp Eye Res, 2008, 87: 433–444PubMedPubMedCentralGoogle Scholar
  81. 81.
    Fausett BV, Goldman D. A role for alpha1 tubulin-expressing Muller glia in regeneration of the injured zebrafish retina. J Neurosci, 2006, 26: 6303–6313PubMedGoogle Scholar
  82. 82.
    Thummel R, Enright JM, Kassen SC, Montgomery JE, Bailey TJ, Hyde DR. Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration. Exp Eye Res, 2010, 90: 572–582PubMedPubMedCentralGoogle Scholar
  83. 83.
    Curado S, Stainier DY. deLiver’in regeneration: injury response and development. Semin Liver Dis, 2010, 30: 288–295PubMedGoogle Scholar
  84. 84.
    Kan NG, Junghans D, Izpisua Belmonte JC. Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy. FASEB J, 2009, 23: 3516–3525PubMedPubMedCentralGoogle Scholar
  85. 85.
    Sadler KC, Krahn KN, Gaur NA, Ukomadu C. Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci USA, 2007, 104: 1570–1575PubMedPubMedCentralGoogle Scholar
  86. 86.
    North TE, Babu IR, Vedder LM, Lord AM, Wishnok JS, Tannenbaum SR, Zon LI, Goessling W. PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc Natl Acad Sci USA, 2010, 107: 17315–17320PubMedPubMedCentralGoogle Scholar
  87. 87.
    Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL, Weidinger G, Puder M, Daley GQ, Moon RT, Zon LI. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell, 2009, 136: 1136–1147PubMedPubMedCentralGoogle Scholar
  88. 88.
    Cox AG, Saunders DC, Kelsey PB Jr., Conway AA, Tesmenitsky Y, Marchini JF, Brown KK, Stamler JS, Colagiovanni DB, Rosenthal GJ, Croce KJ, North TE, Goessling W. S-nitrosothiol signaling regulates liver development and improves outcome following toxic liver injury. Cell Rep, 2014, 6: 56–69PubMedPubMedCentralGoogle Scholar
  89. 89.
    Zhu Z, Chen J, Xiong JW, Peng J. Haploinsufficiency of Def activates p53-dependent TGFbeta signalling and causes scar formation after partial hepatectomy. PLoS One, 2014, 9: e96576PubMedPubMedCentralGoogle Scholar
  90. 90.
    Huang M, Chang A, Choi M, Zhou D, Anania FA, Shin CH. Antagonistic interaction between Wnt and Notch activity modulates the regenerative capacity of a zebrafish fibrotic liver model. Hepatology, 2014, 60: 1753–1766PubMedPubMedCentralGoogle Scholar
  91. 91.
    Choi TY, Ninov N, Stainier DY, Shin D. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology, 2014, 146: 776–788PubMedPubMedCentralGoogle Scholar
  92. 92.
    He J, Lu H, Zou Q, Luo L. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology, 2014, 146: 789–800PubMedGoogle Scholar
  93. 93.
    Goldsmith MI, Iovine MK, O’Reilly-Pol T, Johnson SL. A developmental transition in growth control during zebrafish caudal fin development. Dev Biol, 2006, 296: 450–457PubMedGoogle Scholar
  94. 94.
    Tsai SB, Tucci V, Uchiyama J, Fabian NJ, Lin MC, Bayliss PE, Neuberg DS, Zhdanova IV, Kishi S. Differential effects of genotoxic stress on both concurrent body growth and gradual senescence in the adult zebrafish. Aging Cell, 2007, 6: 209–224PubMedGoogle Scholar
  95. 95.
    Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M. Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol, 2006, 295: 263–277PubMedGoogle Scholar
  96. 96.
    Pearson BJ, Sanchez AA. Regeneration, stem cells, and the evolution of tumor suppression. Cold Spring Harb Symp Quant Biol, 2008, 73: 565–572PubMedGoogle Scholar
  97. 97.
    Sanchez AA, Yamanaka S. Rethinking differentiation: stem cells, regeneration, and plasticity. Cell, 2014, 157: 110–119Google Scholar
  98. 98.
    Kizil C, Otto GW, Geisler R, Nusslein-Volhard C, Antos CL. Simplet controls cell proliferation and gene transcription during zebrafish caudal fin regeneration. Dev Biol, 2009, 325: 329–340PubMedGoogle Scholar
  99. 99.
    Millimaki BB, Sweet EM, Riley BB. Sox2 is required for maintenance and regeneration, but not initial development, of hair cells in the zebrafish inner ear. Dev Biol, 2010, 338: 262–269PubMedPubMedCentralGoogle Scholar
  100. 100.
    Stewart S, Tsun ZY, Izpisua Belmonte JC. A histone demethylase is necessary for regeneration in zebrafish. Proc Natl Acad Sci USA, 2009, 106: 19889–19894PubMedPubMedCentralGoogle Scholar
  101. 101.
    Kizil C, Kyritsis N, Dudczig S, Kroehne V, Freudenreich D, Kaslin J, Brand M. Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3. Dev Cell, 2012, 23: 1230–1237PubMedGoogle Scholar
  102. 102.
    Veldman MB, Bemben MA, Thompson RC, Goldman D. Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Dev Biol, 2007, 312: 596–612PubMedGoogle Scholar
  103. 103.
    Hoehn BD, Palmer TD, Steinberg GK. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke, 2005, 36: 2718–2724PubMedGoogle Scholar
  104. 104.
    Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z, Jacobsen SE, Lindvall O. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci, 2006, 26: 9703–9712PubMedGoogle Scholar
  105. 105.
    Kyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, Iltzsche A, Brand M. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science, 2012, 338: 1353–1356PubMedGoogle Scholar
  106. 106.
    Keightley MC, Wang CH, Pazhakh V, Lieschke GJ. Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. Int J Biochem Cell Biol, 2014, 56C: 92–106Google Scholar
  107. 107.
    Kurimoto T, Yin Y, Habboub G, Gilbert HY, Li Y, Nakao S, Hafezi-Moghadam A, Benowitz LI. Neutrophils express oncomo-dulin and promote optic nerve regeneration. J Neurosci, 2013, 33: 14816–14824PubMedPubMedCentralGoogle Scholar
  108. 108.
    Chazaud B. Macrophages: supportive cells for tissue repair and regeneration. Immunobiology, 2014, 219: 172–178PubMedGoogle Scholar
  109. 109.
    Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 2008, 8: 958–969PubMedPubMedCentralGoogle Scholar
  110. 110.
    Li L, Yan B, Shi YQ, Zhang WQ, Wen ZL. Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. J Biol Chem, 2012, 287: 25353–25360PubMedPubMedCentralGoogle Scholar
  111. 111.
    Petrie TA, Strand NS, Tsung-Yang C, Rabinowitz JS, Moon RT. Macrophages modulate adult zebrafish tail fin regeneration. Development, 2014, 141: 2581–2591PubMedPubMedCentralGoogle Scholar
  112. 112.
    Huang P, Xiao A, Tong X, Zu Y, Wang Z, Zhang B. TALEN construction via “Unit Assembly” method and targeted genome modifications in zebrafish. Methods, 2014, 69: 67–75PubMedGoogle Scholar
  113. 113.
    Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong JW, Xi JJ. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res, 2013, 23: 465–472PubMedPubMedCentralGoogle Scholar
  114. 114.
    Zhang L, Zhou Q. CRISPR/Cas technology: a revolutionary approach for genome engineering. Sci China Life Sci, 2014, 57: 639–640PubMedGoogle Scholar

Copyright information

© The Author(s) 2015

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life SciencesSouthwest UniversityChongqingChina

Personalised recommendations