Skip to main content

Advertisement

SpringerLink
Transcriptional regulatory circuits controlling muscle fiber type switching
Download PDF
Download PDF
  • Review
  • Open Access
  • Published: 19 March 2015

Transcriptional regulatory circuits controlling muscle fiber type switching

  • Jing Liu1,
  • XiJun Liang1 &
  • ZhenJi Gan1 

Science China Life Sciences volume 58, pages 321–327 (2015)Cite this article

  • 1482 Accesses

  • 14 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Skeletal muscle fitness plays vital roles in human health and disease and is determined by developmental as well as physiological inputs. These inputs control and coordinate muscle fiber programs, including capacity for fuel burning, mitochondrial ATP production, and contraction. Recent studies have demonstrated crucial roles for nuclear receptors and their co-activators, and microRNAs (miRNAs) in the regulation of skeletal muscle energy metabolism and fiber type determination. In this review, we present recent progress in the study of nuclear receptor signaling and miRNA networks in muscle fiber type switching. We also discuss the therapeutic potential of nuclear receptors and miRNAs in disease states that are associated with loss of muscle fitness.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev, 2011, 91: 1447–1531

    Article  PubMed  CAS  Google Scholar 

  2. Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol, 2004, 2: e348

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saltin B, Henriksson J, Nygaard E, Andersen P, Jansson E. Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Ann N Y Acad Sci, 1977, 301: 3–29

    Article  PubMed  CAS  Google Scholar 

  4. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol, 1984, 56: 831–838

    PubMed  CAS  Google Scholar 

  5. Yan Z, Okutsu M, Akhtar YN, Lira VA. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol (1985), 2011, 110: 264–274

    Article  CAS  Google Scholar 

  6. Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech, 2000, 50: 500–509

    Article  PubMed  CAS  Google Scholar 

  7. Lillioja S, Young AA, Culter CL, Ivy JL, Abbott WG, Zawadzki JK, Yki-Jarvinen H, Christin L, Secomb TW, Bogardus C. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest, 1987, 80: 415–424

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Ann Rev Biochem, 2006, 75: 19–37

    Article  PubMed  CAS  Google Scholar 

  9. Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, Richardson JA, Bassel-Duby R, Olson EN. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest, 2007, 117: 2459–2467

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Rev, 1999, 20: 649–688

    CAS  Google Scholar 

  11. Hong SH, Ahmadian M, Yu RT, Atkins AR, Downes M, Evans RM. Nuclear receptors and metabolism: from feast to famine. Diabetologia, 2014, 57: 860–867

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Fan W, Atkins AR, Yu RT, Downes M, Evans RM. Road to exercise mimetics: targeting nuclear receptors in skeletal muscle. J Mol Endocrinol, 2013, 51: T87–100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Madrazo JA, Kelly DP. The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol, 2008, 44: 968–975

    Article  PubMed  CAS  Google Scholar 

  14. Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest, 2006, 116: 571–580

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Gulick T, Cresci S, Caira T, Moore DD, Kelly DP. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA, 1994, 91: 11012–11016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Barish GD, Narkar VA, Evans RM. PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest, 2006, 116: 590–597

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E, Denissov S, Borgesen M, Francoijs KJ, Mandrup S, Stunnenberg HG. Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev, 2008, 22: 2953–2967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Finck BN, Bernal-Mizrachi C, Han DH, Coleman T, Sambandam N, LaRiviere LL, Holloszy JO, Semenkovich CF, Kelly DP. A potential link between muscle peroxisome proliferator-activated receptor-alpha signaling and obesity-related diabetes. Cell Metab, 2005, 1: 133–144

    Article  PubMed  CAS  Google Scholar 

  19. Gan Z, Burkart-Hartman EM, Han DH, Finck B, Leone TC, Smith EY, Ayala JE, Holloszy J, Kelly DP. The nuclear receptor PPARbeta/delta programs muscle glucose metabolism in cooperation with AMPK and MEF2. Genes Dev, 2011, 25: 2619–2630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Gan Z, Rumsey J, Hazen BC, Lai L, Leone TC, Vega RB, Xie H, Conley KE, Auwerx J, Smith SR, Olson EN, Kralli A, Kelly DP. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism. J Clin Invest, 2013, 123: 2564–2575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA, 1999, 96: 7473–7478

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, Shoghi K, Welch MJ, Kelly DP. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest, 2007, 117: 3930–3939

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM. AMPK and PPARdelta agonists are exercise mimetics. Cell, 2008, 134: 405–415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Luquet S, Lopez-Soriano J, Holst D, Fredenrich A, Melki J, Rassoulzadegan M, Grimaldi PA. Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J, 2003, 17: 2299–2301

    PubMed  CAS  Google Scholar 

  25. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol, 2004, 2: e294

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schuler M, Ali F, Chambon C, Duteil D, Bornert JM, Tardivel A, Desvergne B, Wahli W, Chambon P, Metzger D. PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab, 2006, 4: 407–414

    Article  PubMed  CAS  Google Scholar 

  27. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998, 92: 829–839

    Article  PubMed  CAS  Google Scholar 

  28. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999, 98: 115–124

    Article  PubMed  CAS  Google Scholar 

  29. Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocrine Rev, 2006, 27: 728–735

    Article  CAS  Google Scholar 

  30. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocrine Rev, 2003, 24: 78–90

    Article  CAS  Google Scholar 

  31. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev, 2004, 18: 357–368

    Article  PubMed  CAS  Google Scholar 

  32. Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest, 2006, 116: 615–622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Lelliott CJ, Medina-Gomez G, Petrovic N, Kis A, Feldmann HM, Bjursell M, Parker N, Curtis K, Campbell M, Hu P, Zhang D, Litwin SE, Zaha VG, Fountain KT, Boudina S, Jimenez-Linan M, Blount M, Lopez M, Meirhaeghe A, Bohlooly YM, Storlien L, Stromstedt M, Snaith M, Oresic M, Abel ED, Cannon B, Vidal-Puig A. Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol, 2006, 4: e369

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sonoda J, Mehl IR, Chong LW, Nofsinger RR, Evans RM. PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci USA, 2007, 104: 5223–5228

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol, 2000, 20: 1868–1876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol, 2003, 546: 851–858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Vianna CR, Huntgeburth M, Coppari R, Choi CS, Lin J, Krauss S, Barbatelli G, Tzameli I, Kim YB, Cinti S, Shulman GI, Spiegelman BM, Lowell BB. Hypomorphic mutation of PGC-1beta causes mitochondrial dysfunction and liver insulin resistance. Cell Metab, 2006, 4: 453–464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE, Medeiros DM, Valencik ML, McDonald JA, Kelly DP. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circulat Res, 2004, 94: 525–533

    Article  PubMed  CAS  Google Scholar 

  39. Zechner C, Lai L, Zechner JF, Geng T, Yan Z, Rumsey JW, Collia D, Chen Z, Wozniak DF, Leone TC, Kelly DP. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab, 2010, 12: 633–642

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Goto M, Terada S, Kato M, Katoh M, Yokozeki T, Tabata I, Shimokawa T. cDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun, 2000, 274: 350–354

    Article  PubMed  CAS  Google Scholar 

  41. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J, 2002, 16: 1879–1886

    Article  PubMed  CAS  Google Scholar 

  42. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest, 2000, 106: 847–856

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature, 2002, 418: 797–801

    Article  PubMed  CAS  Google Scholar 

  44. Wende AR, Schaeffer PJ, Parker GJ, Zechner C, Han DH, Chen MM, Hancock CR, Lehman JJ, Huss JM, McClain DA, Holloszy JO, Kelly DP. A role for the transcriptional coactivator PGC-1alpha in muscle refueling. J Biol Chem, 2007, 282: 36642–36651

    Article  PubMed  CAS  Google Scholar 

  45. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jager S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell, 2004, 119: 121–135

    Article  PubMed  CAS  Google Scholar 

  46. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, Rybkin, II, Shelton JM, Manieri M, Cinti S, Schoen FJ, Bassel-Duby R, Rosenzweig A, Ingwall JS, Spiegelman BM. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab, 2005, 1: 259–271

    Article  PubMed  CAS  Google Scholar 

  47. Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, Yan Z, Spiegelman BM. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem, 2007, 282: 30014–30021

    Article  PubMed  CAS  Google Scholar 

  48. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol, 2005, 3: e101

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 2012, 151: 1319–1331

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Agudelo LZ, Femenia T, Orhan F, Porsmyr-Palmertz M, Goiny M, Martinez-Redondo V, Correia JC, Izadi M, Bhat M, Schuppe-Koistinen I, Pettersson AT, Ferreira DM, Krook A, Barres R, Zierath JR, Erhardt S, Lindskog M, Ruas JL. Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell, 2014, 159: 33–45

    Article  PubMed  CAS  Google Scholar 

  51. Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, Medeiros DM, Kovacs A, Kelly DP. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev, 2008, 22: 1948–1961

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136: 215–233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell, 2012, 148: 1172–1187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Williams AH, Liu N, van Rooij E, Olson EN. MicroRNA control of muscle development and disease. Curr Opin Cell Biol, 2009, 21: 461–469

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482: 339–346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature, 2011, 469: 336–342

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Song X, Shan D, Chen J, Jing Q. miRNAs and lncRNAs in vascular injury and remodeling. Sci China Life Sci, 2014, 57: 826–835

    Article  PubMed  CAS  Google Scholar 

  58. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843–854

    Article  PubMed  CAS  Google Scholar 

  59. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75: 855–862

    Article  PubMed  CAS  Google Scholar 

  60. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev, 2002, 16: 1616–1626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294: 853–858

    Article  PubMed  CAS  Google Scholar 

  62. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294: 858–862

    Article  PubMed  CAS  Google Scholar 

  63. Matkovich SJ, Hu Y, Eschenbacher WH, Dorn LE, Dorn GW, 2nd. Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy. Circulat Res, 2012, 111: 521–531

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet, 2007, 8: 93–103

    Article  PubMed  CAS  Google Scholar 

  65. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ, Jr., Olson EN. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell, 2009, 17: 662–673

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chen JF, Callis TE, Wang DZ. microRNAs and muscle disorders. J Cell Sci, 2009, 122: 13–20

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet, 2008, 24: 159–166

    Article  PubMed  Google Scholar 

  68. Bell ML, Buvoli M, Leinwand LA. Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol Cell Biol, 2010, 30: 1937–1945

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Ji J, Tsika GL, Rindt H, Schreiber KL, McCarthy JJ, Kelm RJ, Jr., Tsika R. Puralpha and Purbeta collaborate with Sp3 to negatively regulate beta-myosin heavy chain gene expression during skeletal muscle inactivity. Mol Cell Biol, 2007, 27: 1531–1543

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Hagiwara N, Yeh M, Liu A. Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dynam, 2007, 236: 2062–2076

    Article  CAS  Google Scholar 

  71. von Hofsten J, Elworthy S, Gilchrist MJ, Smith JC, Wardle FC, Ingham PW. Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo. EMBO Rep, 2008, 9: 683–689

    Article  Google Scholar 

  72. Quiat D, Voelker KA, Pei J, Grishin NV, Grange RW, Bassel-Duby R, Olson EN. Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proc Natl Acad Sci USA, 2011, 108: 10196–10201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Narkar VA, Fan W, Downes M, Yu RT, Jonker JW, Alaynick WA, Banayo E, Karunasiri MS, Lorca S, Evans RM. Exercise and PGC-1alpha-independent synchronization of type I muscle metabolism and vasculature by ERRgamma. Cell Metab, 2011, 13: 283–293

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Yan J, Zhao Y, Zhao B. Green tea catechins prevent obesity through modulation of peroxisome proliferator-activated receptors. Sci China Life Sci, 2013, 56: 804–810

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China

    Jing Liu, XiJun Liang & ZhenJi Gan

Authors
  1. Jing Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. XiJun Liang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. ZhenJi Gan
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to ZhenJi Gan.

Additional information

This article is published with open access at link.springer.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liang, X. & Gan, Z. Transcriptional regulatory circuits controlling muscle fiber type switching. Sci. China Life Sci. 58, 321–327 (2015). https://doi.org/10.1007/s11427-015-4833-4

Download citation

  • Received: 04 August 2014

  • Accepted: 17 December 2014

  • Published: 19 March 2015

  • Issue Date: April 2015

  • DOI: https://doi.org/10.1007/s11427-015-4833-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • fiber type switching
  • gene regulation
  • muscle
  • nuclear receptor
  • microRNA
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.