Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Science China Life Sciences
  3. Article

Therapeutic potential of berberine against neurodegenerative diseases

  • Review
  • Open access
  • Published: 06 March 2015
  • Volume 58, pages 564–569, (2015)
  • Cite this article
Download PDF

You have full access to this open access article

Science China Life Sciences Aims and scope Submit manuscript
Therapeutic potential of berberine against neurodegenerative diseases
Download PDF
  • WenXiao Jiang1,
  • ShiHua Li2 &
  • XiaoJiang Li2 
  • 2207 Accesses

  • 53 Citations

  • 2 Altmetric

  • Explore all metrics

Abstract

Berberine (BBR) is an organic small molecule isolated from various plants that have been used in traditional Chinese medicine. Isolation of this compound was its induction into modern medicine, and its usefulness became quickly apparent as seen in its ability to combat bacterial diarrhea, type 2 diabetes, hypercholesterolemia, inflammation, heart diseases, and more. However, BBR’s effects on neurodegenerative diseases remained relatively unexplored until its ability to stunt Alzheimer’s disease (AD) progression was characterized. In this review, we will delve into the multi-faceted defensive capabilities and bio-molecular pathways of BBR against AD, Parkinson’s disease (PD), and trauma-induced neurodegeneration. The multiple effects of BBR, some of which enhance neuro-protective factors/pathways and others counteract targets that induce neurodegeneration, suggest that there are many more branches to the diverse capabilities of BBR that have yet to be uncovered. The promising results seen provide a convincing and substantial basis to support further scientific exploration and development of the therapeutic potential of BBR against neurodegenerative diseases.

Article PDF

Download to read the full article text

Similar content being viewed by others

Antiaging agents: safe interventions to slow aging and healthy life span extension

Article Open access 09 May 2022

Ji-Kai Liu

Herbal medicine and gut microbiota: exploring untapped therapeutic potential in neurodegenerative disease management

Article Open access 15 January 2024

Yueyue Guan, Guohua Tang, … Jun Tang

Effect of rapamycin on aging and age-related diseases—past and future

Article Open access 10 October 2020

Ramasamy Selvarani, Sabira Mohammed & Arlan Richardson

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Takase H, Yamamoto K, Ito K, Yumioka E. Pharmacological studies on antidiarrheal effects of berberine and geranii herba (in Japanese). Nihon Yakurigaku Zasshi, 1993, 102: 101–112

    Article  CAS  PubMed  Google Scholar 

  2. Kheir MM, Wang Y, Hua L, Hu J, Li L, Lei F, Du L. Acute toxicity of berberine and its correlation with the blood concentration in mice. Food Chem Toxicol, 2010, 48: 1105–1110

    Article  CAS  PubMed  Google Scholar 

  3. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med, 2004, 10: 1344–1351

    Article  CAS  PubMed  Google Scholar 

  4. Zhang H, Wei J, Xue R, Wu JD, Zhao W, Wang ZZ, Wang SK, Zhou ZX, Song DQ, Wang YM, Pan HN, Kong WJ, Jiang, J. D. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism, 2010, 59: 285–292

    Article  PubMed  Google Scholar 

  5. Li BX, Yang BF, Zhou J, Xu CQ, Li YR. Inhibitory effects of berberine on IK1, IK, and HERG channels of cardiac myocytes. Acta Pharmacol Sin, 2001, 22: 125–131

    CAS  PubMed  Google Scholar 

  6. Jiang Q, Liu P, Wu X, Liu W, Shen X, Lan T, Xu S, Peng J, Xie X, Huang H. Berberine attenuates lipopolysaccharide-induced extracellular matrix accumulation and inflammation in rat mesangial cells: involvement of NF-κB signaling pathway. Mol Cell Endocrinol, 2011, 331: 34–40

    Article  CAS  PubMed  Google Scholar 

  7. Hayashi K, Minoda K, Nagaoka Y, Hayashi T, Uesato S. Antiviral activity of berberine and related compounds against human cytomegalovirus. Bioorg Med Chem Lett, 2007, 17: 1562–1564

    Article  CAS  PubMed  Google Scholar 

  8. Iizuka N1, Miyamoto K, Okita K, Tangoku A, Hayashi H, Yosino S, Abe T, Morioka T, Hazama S, Oka M. Inhibitory effect of Coptidis Rhizoma and berberine on the proliferation of human esophageal cancer cell lines. Cancer Lett, 2000, 148: 19–25

    Article  CAS  PubMed  Google Scholar 

  9. Sack RB, Froehlich JL. Berberine inhibits intestinal secretory response of Vibrio cholerae and Escherichia coli enterotoxins. Infect Immun, 1982, 35: 471–475

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Hong Y, Hui SC, Chan TY, Hou JY. Effect of berberine on regression of pressure-overload induced cardiac hypertrophy in rats. Am J Chin Med, 2002, 30: 589–599

    Article  CAS  PubMed  Google Scholar 

  11. Dong SF, Hong Y, Liu M, Hao YZ, Yu HS, Liu Y, Sun J. N. Berberine attenuates cardiac dysfunction in hyperglycemic and hypercholesterolemic rats. Eur J Pharmacol, 2011, 660: 368–374

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Li X, Zou D, Liu W, Yang J, Zhu N, Huo L, Wang M, Hong J, Wu P, Ren G, Ning G. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab, 2008, 93: 2559–2565

    Article  CAS  PubMed  Google Scholar 

  13. Peng PL, Hsieh YS, Wang CJ, Hsu JL, Chou FP. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol Appl Pharmacol, 2006, 214: 8–15

    Article  CAS  PubMed  Google Scholar 

  14. Lin TH, Kuo HC, Chou FP, Lu FJ. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer, 2008, 8: 58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Peng WH, Wu CR, Chen CS, Chen CF, Leu ZC, Hsieh MT. Anxiolytic effect of berberine on exploratory activity of the mouse in two experimental anxiety models: interaction with drugs acting at 5-HT receptors. Life Sci, 2004, 75: 2451–2462

    Article  CAS  PubMed  Google Scholar 

  16. Zhu F, Qian C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci, 2006, 7: 78

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kwon IH, Choi HS, Shin KS, Lee BK, Lee CK, Hwang BY, Lim SC, Lee MK. Effects of berberine on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and a rat model of Parkinson’s disease. Neurosci Lett, 2010, 48: 29–33

    Article  Google Scholar 

  18. Hebert LE, Scherr PA, Beckett LA, Albert MS, Pilgrim DM, Chown MJ, Funkenstein HH, Evans DA. Age-specific incidence of Alzheimer’s disease in a community population. JAMA, 1995, 273: 1354–1359

    Article  CAS  PubMed  Google Scholar 

  19. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci, 1991, 12: 383–388

    Article  CAS  PubMed  Google Scholar 

  20. Davie CA. A review of Parkinson’s disease. Br Med Bull, 2008, 86: 109–127

    Article  CAS  PubMed  Google Scholar 

  21. Dickson DV. Neuropathology of movement disorders. In: Tolosa E, Jankovic JJ. Parkinson’s disease and movement disorders. Hagerstown, MD: Lippincott Williams & Wilkins, 2007. 271–283

    Google Scholar 

  22. The National Collaborating Centre for Chronic Conditions, ed. “Symptomatic pharmacological therapy in Parkinson’s disease”. Parkinson’s Disease. London: Royal College of Physicians, 2006. 59–100

    Google Scholar 

  23. Castillo J, Hung J, Rodriguez M, Bastidas E, Laboren I, Jaimes A. LED fluorescence spectroscopy for direct determination of monoamine oxidase B inactivation. Anal Biochem, 2005, 343: 293–298

    Article  CAS  PubMed  Google Scholar 

  24. Jung HA, Min BS, Yokozawa T, Lee JH, Kim YS, Choi JS. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull, 2009, 32: 1433–1438

    Article  CAS  PubMed  Google Scholar 

  25. Panahi N, Mahmoudian M, Mortazavi P, Hashjin GS. Effects of berberine on β-secretase activity in a rabbit model of Alzheimer’s disease. Arch Med Sci, 2013, 9: 146–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Asai M, Iwata N, Yoshikawa A, Aizaki Y, Ishiura S, Saido TC, Maruyama K. Berberine alters the processing of Alzheimer’s amyloid precursor protein to decrease Abeta secretion. Biochem Biophys Res Commun, 2007, 352: 498–502

    Article  CAS  PubMed  Google Scholar 

  27. Durairajan SSK, Liu LF, Lu JH, Chen LL, Yuan Q, Chung SK, Huang L, Li XS, Huang JD, Li M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol Aging, 2012, 33: 2903–2919

    Article  CAS  PubMed  Google Scholar 

  28. Kim M, Cho KH, Shin MS, Lee JM, Cho HS, Kim CJ, Shin DH, Yang HJ. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease. Int J Mol Med, 2014, 33: 870–878

    CAS  PubMed  Google Scholar 

  29. Kwon IH1, Choi HS, Shin KS, Lee BK, Lee CK, Hwang BY, Lim SC, Lee MK. Effects of berberine on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and a rat model of Parkinson’s disease. Neurosci Lett, 2010, 486: 29–33

    Article  CAS  PubMed  Google Scholar 

  30. Shin KS, Choi HS, Zhao TT, Suh KH, Kwon IH, Choi SO, Lee MK. Neurotoxic effects of berberine on long-term l-DOPA administration in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Arch Pharm Res, 2013, 36: 759–767

    Article  CAS  PubMed  Google Scholar 

  31. Castillo JA, Huang J, Rodriguez M, Bastidas E, Laboren I, Jaimes A. Direct led-fluorescence method for Mao-B inactivation in the treatment of Parkinson’s. In: 5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications. International Society for Optics and Photonics, 2004. 142–148

    Google Scholar 

  32. Kong LD, Cheng CH, Tan RX. Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med, 2001, 67: 74–76

    Article  CAS  PubMed  Google Scholar 

  33. Bae J, Lee D, Kim YK, Gil M, Lee JY, Lee KJ. Berberine protects 6-hydroxydopamine-induced human dopaminergic neuronal cell death through the induction of heme oxygenase-1. Mol Cells, 2013, 35: 151–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hsu YY, Chen CS, Wu SN, Jong YJ, Lo YC. Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells. Eur J Pharm Sci, 2012, 46: 415–425

    Article  CAS  PubMed  Google Scholar 

  35. Zhang X, Zhang X, Wang C, Li Y, Dong L, Cui L, Wang L, Liu Z, Qiao H, Zhu C, Xing Y, Cao X, Ji Y, Zhao K. Neuroprotection of early and short-time applying berberine in the acute phase of cerebral ischemia: up-regulated pAkt, pGSK and pCREB, down-regulated NF-κB expression, ameliorated BBB permeability. Brain Res, 2012, 1459: 61–70

    Article  CAS  PubMed  Google Scholar 

  36. Hu J, Chai Y, Wang Y, Kheir MM, Li H, Yuan Z, Wan H, Xing D, Lei F, Du L. PI3K p55γ promoter activity enhancement is involved in the anti-apoptotic effect of berberine against cerebral ischemiareperfusion. Eur J Pharm, 2012, 674: 132–142

    Article  CAS  Google Scholar 

  37. Zhou XQ, Zeng XN, Kong H, Sun XL. Neuroprotective effects of berberine on stroke models in vitro and in vivo. Neurosci Lett, 2008, 447: 31–36

    Article  CAS  PubMed  Google Scholar 

  38. Cui HS, Matsumoto K, Murakami Y, Hori H, Zhao Q, Obi R. Berberine exerts neuroprotective actions against in vitro ischemia-induced neuronal cell damage in organotypic hippocampal slice cultures: involvement of B-cell lymphoma 2 phosphorylation suppression. Biol Pharm Bull, 2009, 32: 79–85

    Article  CAS  PubMed  Google Scholar 

  39. Lim JS, Kim HS, Choi YS, Kwon HM, Shin KS, Joung IS, Shin MJ, Kwon YK. Neuroprotective effects of berberine in neurodegeneration model rats induced by ibotenic acid. Anim Cells Syst, 2008, 12: 203–209

    Article  CAS  Google Scholar 

  40. Zhang J, Yang JQ, He BC, Zhou QX, Yu HR, Tang Y, Liu BZ. Berberine and total base from rhizoma coptis chinensis attenuate brain injury in an aluminum-induced rat model of neurodegenerative disease. Saudi Med J, 2009, 30: 760–766

    PubMed  Google Scholar 

  41. Hong JS, Chu YK, Lee H, Ahn BH, Park JH, Kim MJ, Lee S, Ryoo HS, Jang JH, Lee SR, Park JW. Effects of berberine on hippocampal neuronal damage and matrix metalloproteinase-9 activity following transient global cerebral ischemia. J Neurosci Res, 2012, 90: 489–497

    Article  CAS  PubMed  Google Scholar 

  42. Benaissa F, Mohseni-Rad H, Rahimi-Moghaddam P, Mahmoudian M. Berberine reduces the hypoxic-ischemic insult in rat pup brain. Acta Physiol Hung, 2009, 96: 213–220

    Article  CAS  PubMed  Google Scholar 

  43. Lee T, Heo H, Kim Kwon Y. Effect of berberine on cell survival in the developing rat brain damaged by MK-801. Exp Neurobiol, 2010, 19: 140–145

    Article  PubMed Central  PubMed  Google Scholar 

  44. Bhutada P, Mundhada Y, Bansod K, Tawari S, Patil S, Dixit P, Umathe S, Mundhada D. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav Brain Res, 2011, 220: 30–41

    Article  CAS  PubMed  Google Scholar 

  45. Mangoni A, Grassi MP, Frattola L, Piolti R, Bassi S, Motta A, Marcone A, Smirne S. Effects of a MAO-B inhibitor in the treatment of Alzheimer disease. Eur Neurol, 1991, 31: 100–107

    Article  CAS  PubMed  Google Scholar 

  46. Rabey JM, Sagi I, Huberman M, Melamed E, Korczyn A, Giladi N, Inzelberg R, Djaldetti R, Klein C, Berecz G; Rasagiline Study Group. Rasagiline mesylate, a new MAO-B inhibitor for the treatment of Parkinson’s disease: a double-blind study as adjunctive therapy to levodopa. Clin Neuropharmacol, 2000, 23: 324–330

    Article  CAS  PubMed  Google Scholar 

  47. Kurth JH, Kurth MC, Poduslo SE, Schwankhaus JD. Association of a monoamine oxidase B allele with Parkinson’s disease. Ann Neurol, 1993, 33: 368–372

    Article  CAS  PubMed  Google Scholar 

  48. Cristina RA, Oliveira CR. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res, 2003, 28: 1563–1574

    Article  Google Scholar 

  49. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 2006, 127: 397–408

    Article  CAS  PubMed  Google Scholar 

  50. Lei Y, He HY, Zhang XJ. Increased expression of intranuclear AChE involved in apoptosis of SK-N-SH cells. Neurosci Res, 2002, 42: 261–268

    Article  Google Scholar 

  51. Holzgrabe U, Kapková P, Alptüzün V, Scheiber J, Kugelmann E. Targeting acetylcholinesterase to treat neurodegeneration. Expert Opin Ther Targets, 2007, 11: 161–179

    Article  CAS  PubMed  Google Scholar 

  52. Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA. Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci, 2008, 28: 13574–13581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. de Vries HE, Witte M, Hondius D, Rozemuller AJ, Drukarch B, Hoozemans J, van Horssen J. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med, 2008, 45: 1375–1383

    Article  CAS  PubMed  Google Scholar 

  54. Perry T, Holloway HW, Weerasuriya A, Mouton PR, Duffy K, Mattison JA, Greig NH. Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy. Exp Neurol, 2007, 203: 293–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hölscher C. The role of GLP-1 in neuronal activity and neurodegeneration. Vitam Horm, 2010, 84: 331–354

    PubMed  Google Scholar 

  56. Li Y, Perry T, Kindy MS, Harvey BK, Tweedie D, Holloway HW, Powers K, Shen H, Egan JM, Sambamurti K, Brossi A, Lahiri DK, Mattson MP, Hoffer BJ, Wang Y, Greig NH. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci USA, 2009, 106: 1285–1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Kennedy SG, Kandel ES, Cross TK, Hay N. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol, 1999, 19: 5800–5810

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Brunet A, Datta SR, Greenberg ME. Transcription-dependent and-independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol, 2001, 11: 297–305

    Article  CAS  PubMed  Google Scholar 

  59. Kazuhiro N, Ito S, Nakashima K. Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson’s disease model of SH-SY5Y cells. Neurosci Lett, 2008, 432: 146–150

    Article  Google Scholar 

  60. Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Martin Villalba A, Tronche F, Kellendonk C, Gau D, Kapfhammer J, Otto C, Schmid W, Schütz G. Disruption of CREB function in brain leads to neurodegeneration. Nat Genet, 2002, 31: 47–54

    Article  CAS  PubMed  Google Scholar 

  61. Mike D. CREB and neurodegeneration. Front Biosci, 2004, 9: 100–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Microbiology and Molecular Genetics, Emory University, Atlanta, GA, 30322, USA

    WenXiao Jiang

  2. Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA

    ShiHua Li & XiaoJiang Li

Authors
  1. WenXiao Jiang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. ShiHua Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. XiaoJiang Li
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to XiaoJiang Li.

Additional information

This article is published with open access at link.springer.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Li, S. & Li, X. Therapeutic potential of berberine against neurodegenerative diseases. Sci. China Life Sci. 58, 564–569 (2015). https://doi.org/10.1007/s11427-015-4829-0

Download citation

  • Received: 21 August 2014

  • Accepted: 16 December 2014

  • Published: 06 March 2015

  • Issue Date: June 2015

  • DOI: https://doi.org/10.1007/s11427-015-4829-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Huntington’s disease
  • berberine
  • autophagy
  • protein aggregation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature