Science China Life Sciences

, Volume 58, Issue 2, pp 187–201 | Cite as

Development and application of biological technologies in fish genetic breeding

  • Kang Xu
  • Wei Duan
  • Jun Xiao
  • Min Tao
  • Chun Zhang
  • Yun Liu
  • ShaoJun Liu
Open Access
Review Special Topic: Fish biology and biotechnology

Abstract

Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties. For the purpose of genetic improvement, researchers can select for desirable genetic traits, integrate a suite of traits from different donors, or alter the innate genetic traits of a species. These improved varieties have, in many cases, facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield. In this review, we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies (containing traditional selective breeding, molecular marker-assisted breeding, genome-wide selective breeding and breeding by controlling single-sex groups), integration breeding technologies (containing cross breeding, nuclear transplantation, germline stem cells and germ cells transplantation, artificial gynogenesis, artificial androgenesis and polyploid breeding) and modification breeding technologies (represented by transgenic breeding) in fish genetic breeding. Additionally, we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish, including distant hybridization, gynogenesis, and androgenesis. Finally, we systematically summarize the research status and known problems associated with each technology.

Keywords

fish genetic breeding genetic improvement biological method traits new variety 

References

  1. 1.
    Kause A, Ritola O, Paananen T, Wahlroos H, Mantysaan EA. Genetic trends in growth, sexual maturity and skeletal deformations, and rate of inbreeding in a breeding programme for rainbow trout (Oncorhynchus mykiss). Aquaculture, 2005, 247: 177–187Google Scholar
  2. 2.
    Neira R, Díaz NF, Gall GAE, Gallardo JA, Lhorente JP, Alert A. Genetic improvement in coho salmon (Oncorhynchus kisutch). II: Selection response for early spawning date. Aquaculture, 2006, 257: 1–8Google Scholar
  3. 3.
    Saillant E, Dupont-Nivet M, Haffray P, Beatrice C. Estimates of heritability and genotype environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture, 2006, 254: 139–147Google Scholar
  4. 4.
    Gheyas AA, Woolliams JA, Taggart JB, Sattar MA, Das TK, McAndrew BJ, Penman DJ. Heritability estimation of silver carp (Hypophthalmichthys molitrix) harvest traits using microsatellite based parentage assignment. Aquaculture, 2009, 294: 187–193Google Scholar
  5. 5.
    Rezk MA, Smitherman RO, Williams JC, Nichols A, Kucuktas H, Dunham RA. Response to three generations of selection for increased body weight in channel catfish, Ictalurus punctatus, grown in earthen ponds. Aquaculture, 2003, 228: 69–79Google Scholar
  6. 6.
    Embody GC, Hayford CO. The advantage of rearing brook trout fingerlings from selected breeders. Trans Am Fish Soc, 1925, 55: 135–142Google Scholar
  7. 7.
    Main KL, Reynolds E. Selective breeding of fishes in Asia and the United States. In: Proceedings of a workshop in Honolulu, Hawaii. 1993, 3-7: 206–213Google Scholar
  8. 8.
    Wang HF, Liu X, Su JH, Wang GF, Wei YM. Effects of starvation and subsequent refeeding on growth and biochemical compositions of Gansu Golden Trout. J Anim Vet Adv, 2013, 12: 289–294Google Scholar
  9. 9.
    Tang SJ, Li SF, Cai WQ, Zhao Y. Microsatellite analysis of variation among wild, domesticated, and genetically improved populations of blunt snout bream (Megalobrama amblycephala). Zool Res, 2014, 35: 108–117PubMedGoogle Scholar
  10. 10.
    Li SF, Tang SJ, Cai WQ. RAPD-SCAR markers for genetically improved NEW GIFT Nile Tilapia (Oreochromis niloticus niloticus L.) and their application in strain identification. Zool Res, 2010, 31: 147–53PubMedGoogle Scholar
  11. 11.
    Liu YG, Chen SL, Li BF, Wang ZJ, Liu ZJ. Analysis of genetic variation in selected stocks of hatchery flounder, Paralichthys olivaceus, using AFLP markers. Biochem Syst Ecol, 2005, 33: 993–1005Google Scholar
  12. 12.
    Ning Y, Liu XD, Wang ZY, Guo W, Li YY, Xie FJ. A genetic map of large yellow croaker Pseudosciaena crocea. Aquaculture, 2007, 264: 16–26Google Scholar
  13. 13.
    Zhang TS, Kong J, Liu BS, Wang QY, Cao BX, Luan S, Wang WJ. Genetic parameter estimation for juvenile growth and upper thermal tolerance in turbot (Scophthalmus maximus Linnaeus). Acta Oceanol Sin, 2014, 33: 106–110Google Scholar
  14. 14.
    Hong WS, Zhang QY. Review of captive bred species and fry production of marine fish in China. Aquaculture, 2003, 227: 305–318Google Scholar
  15. 15.
    Yang WJ, Kang XL, Yang QF, Lin Y, Fang MY. Review on the development of genotyping methods for assessing farm animal diversity. Journal of Animal Science and Biotechnology, 2013, 4: 2PubMedCentralPubMedGoogle Scholar
  16. 16.
    Arif IA, Khan HA. Molecular markers for biodiversity analysis of wildlife animals: a brief review. Anim Bioiv Conserv, 2009, 32: 9–17Google Scholar
  17. 17.
    Jander G. Gene identification and cloning by molecular marker mapping. Methods Mol Biol, 2006, 323: 115–126PubMedGoogle Scholar
  18. 18.
    Luo ZW, Hackett CA, Bradshaw JE, McNicol JW, Milbourne D. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics, 2001, 157: 1369–1385PubMedCentralPubMedGoogle Scholar
  19. 19.
    Montaldo HH, Meza-Herrera CA. Use of molecular markers and major genes in the genetic improvement of livestock. Electron J Biotechn, 1998, 1: 1–7Google Scholar
  20. 20.
    Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep, 2008, 27: 617–631PubMedGoogle Scholar
  21. 21.
    Postlethwait JH, Johnson SL, Midson CN, Talbot WS, Gates M, Ballinger EW, Africa D, Andrews R, Carl T, Eisen JS. A genetic linkage map for the zebrafish. Science, 1994, 264: 699–703PubMedGoogle Scholar
  22. 22.
    Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H. A medaka gene map: the trace of ancestral vertebrate protochromosome revealed by comparative gene mapping. Genome Res, 2004, 14: 820–828PubMedCentralPubMedGoogle Scholar
  23. 23.
    Kai W, Kikuchi K, Fujita M, Suetake H, Fujiwara A, Yoshiura Y, Ototake M, Venkatesh B, Miyaki K, Suzuki Y. A genetic linkage map for the tiger pufferfish, Takifugu rubripes. Genetics, 2005, 171: 227–238PubMedCentralPubMedGoogle Scholar
  24. 24.
    Walter RB, Rains JD, Russell JE, Guerra TM, Daniels C, Johnston DA, Kumar J, Wheeler A, Kelnar K, Khanolkar VA, Williams EL, Hornecker JL, Hollek L, Mamerow MM, Pedroza A, Kazianis S. A microsatellite genetic linkage map for Xiphophorus. Genetics, 2004, l68: 363–372Google Scholar
  25. 25.
    Peichel CL, Nereng KS, Ohgi KA, Cole BLE, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM. The genetic architecture of divergence between three spine stickleback species. Nature, 2001, 414: 90l–905Google Scholar
  26. 26.
    Young WP, Wheeler PA, Coryell VH. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 1998, 148: 839–850PubMedCentralPubMedGoogle Scholar
  27. 27.
    Lee BY, Lee WJ, Streelman JT, Carleton KL, Howe AE, Hulata G, Slettan A, Stern JE, Terai Y, Kocher TD. A second generation genetic linkage map of tilapia (Oreochromis spp.). Genetics, 2005, 170: 237–244PubMedCentralPubMedGoogle Scholar
  28. 28.
    Liu ZJ, Cordes JF. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 2004, 238: 1–37Google Scholar
  29. 29.
    Chauhan T, Rajiv K. Molecular markers and their applications in fisheries and aquaculture. Adv Biosci Biotech, 2010, 1: 281–291Google Scholar
  30. 30.
    Laghari MY, Lashari P, Zhang X, Xu P, Narejo NT, Xin B, Zhang Y, Sun X. QTL mapping for economically important traits of common carp (Cyprinus carpio L.). J Appl Genet, 2014, doi: 10.1007/s13353-014-0232-yGoogle Scholar
  31. 31.
    Gui JF, Zhu ZY. Molecular basis and genetic improvement of economically important traits in aquaculture animals. Chin Sci Bull, 2012, 57: 1751–1760Google Scholar
  32. 32.
    Jang SH, Liu H, Su JG, Dong F, Xiong F, Liao LJ, Wang YP, Zhu ZY. Construction and characterization of two bacterial artificial chromosome libraries of grass carp. Mar Biotechnol, 2010, 12: 261–266PubMedGoogle Scholar
  33. 33.
    Geng FS, Zhou L, Gui JF. Construction and characterization of a BAC library for Carassius auratus gibelio, a gynogenetic polyploid fish. Anim Genet, 2005, 36: 535–536PubMedGoogle Scholar
  34. 34.
    Zhang JJ, Shao CW, Zhang LY, Liu K, Gao FT, Dong ZD, Xu P, Chen SL. A first generation BAC-based physical map of the half-smooth tongue sole (Cynoglossus semilaevis) genome. BMC Genomics, 2014, 15: 215PubMedCentralPubMedGoogle Scholar
  35. 35.
    Zhao SY. Genomics and life sciences industry. Chin Sci Bull, 1999, 11: 1–5Google Scholar
  36. 36.
    Sarropoulou E, Nousdili D, Magoulas A, Kotoulas G. Linking the genomes of nonmodel teleosts through comparative genomics. Mar Biotechnol, 2008, 10: 227–233PubMedGoogle Scholar
  37. 37.
    Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzen A, Winer R, Knight J, Vogel JH, Aken B, Andersen Q, Lagesen K, Tooming-Klunderud A, Edvardsen BO, Moum T, Skage M, Berg PR, Gjqen T, Kuhl H, Thorsen J, Malde K, Reinhardt R, Du L, Johansen SD, Searle S, Lien S, Nilsen F, Jonassen I, Omholt SW, Stenseth NC, Jakobsen KS. The genome sequence of Atlantic cod reveals a unique immune system. Nature, 2011, 477: 207–210PubMedCentralPubMedGoogle Scholar
  38. 38.
    Chen SL, Zhang GJ, Shao CW, Huang QF, Liu G, Zhang P, Song WT, An N, Chalopin D, Volff JN, Hong YH, Li QY, Sha ZX, Zhou HL, Xie MS, Yu QL, Liu Y, Xiang H, Wang N, Wu K, Yang CG, Zhou Q, Liao XL, Yang LF, Hu QM, Zhang JL, Meng L, Jin LJ, Tian YS, Lian JM, Yang JF, Miao GD, Liu SS, Liang Z, Yan F, Li YZ, Sun B, Zhang H, Zhang J, Zhu Y, Du M, Zhao YW, Schartl M, Tang QS, Wang J. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet, 2014, 46: 253–260PubMedGoogle Scholar
  39. 39.
    Zhang GF, Fang XD, Guo XM, Li L, Luo RB, Xu F, Yang PC, Zhang LL, Wang XT, Qi HG, Xiong ZQ, Que HY, Xie YL, Holland PWH, Paps J, Zhu YB, Wu FC, Chen YX, Wang JF, Peng CF, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang ZY, Zhu QH, Feng Y, Mount A, Hedgecock D, Xu Z, Liu YJ, Domazet-Loso T, Du YS, Sun XQ, Zhang SD, Liu BH, Cheng PZ, Jiang XT, Li J, Fan DD, Wang W, Fu WJ, Wang T, Wang B, Zhang JB, Peng ZY, Li YX, Li N, Wang JP, Chen MS, He Y, Tan FJ, Song XR, Zheng QM, Huang RL, Yang HL, Du XD, Chen L, Yang M, Gaffney PM, Wang S, Luo LH, She ZC, Ming Y, Huang W, Zhang S, Huang BY, Zhang Y, Qu T, Ni PX, Miao GY, Wang JY, Wang Q, Steinberg CEW, Wang HY, Li N, Qian LM, Zhang GJ, Li YR, Yang HM, Liu X, Wang J, Yin Y, Wang J. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 2012, 490: 49–54PubMedGoogle Scholar
  40. 40.
    Xu P, Zhang XF, Wang XM, Li JT, Liu GM, Kuang YY, Xu J, Zheng XH, Ren LF, Wang GL, Zhang Y, Huo LH, Zhao ZX, Cao DC, Lu CY, Li C, Zhou Y, Liu ZJ, Fan ZH, Shan GL, Li XG, Wu SX, Song LP, Hou GY, Jiang YL, Jeney Z, Yu D, Wang L, Shao CJ, Song L, Sun J, Ji PF, Wang J, Li Q, Xu LM, Sun FY, Feng JX, Wang CH, Wang SL, Wang BS, Li Y, Zhu YP, Xue W, Zhao L, Wang JT, Gu Y, Lv WH, Wu KJ, Xiao JF, Wu JY, Zhang Z, Yu J, Sun XW. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet, 2014, doi: 10.1038/ng.3098Google Scholar
  41. 41.
    Devlin R, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 2002, 208: 191–364Google Scholar
  42. 42.
    Pandian TJ, Sheela SG. Hormonal induction of sex reversal in fish. Aquaculture, 1995, 138: 1–22Google Scholar
  43. 43.
    Piferrer F. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture, 2001, 197: 229–281Google Scholar
  44. 44.
    Yamamoto T. Progeny of artificially induced sex-reversals of male genotype (XY) in the medaka (Oryzias latipes) with special reference to YY male. Geneties, 1955, 40: 406–429Google Scholar
  45. 45.
    Guerrero RD. Use of Androgens for the production of all male Tilapia aurea (steindacher). Trans Amer Fish Soc, 1975, 104: 342–348Google Scholar
  46. 46.
    Liu SJ, Yao ZZ, Wang YQ. Sex hormone induction of sex reversal in the teleost clarias lazera and evidence for female homogmety and male heterogamety. J Exp Zool, 1996, 276: 432–438Google Scholar
  47. 47.
    Liu SJ, Yao ZZ. Self-fertilization of hermaphrodites of the teleost Clarias lazera after oral administration of 17-α-methyltestosterone and their offspring. J Exp Zool, 1995, 273: 527–532Google Scholar
  48. 48.
    Chen RD, Huang WY, Wu QJ, Ye YZ. Cultivation and breeding effects of all-female carp (in Chinese). Reserv Fish, 1990, 3: 21–23Google Scholar
  49. 49.
    Luo KK, Xiao J, Liu SJ, Wang J, He WG, Hu J, Qin QB, Zhang C, Tao M, Liu Y. Massive production of all-female diploids and triploids in the crucian carp. Int J Biol Sci, 2011, 7: 487–495PubMedCentralPubMedGoogle Scholar
  50. 50.
    Liu HQ, Cui SQ, Hou CC, Xu J, Chen HX. YY supermale generated gynogenetically from XY female in Pelteobagrus fulvidraco (Richardson) (in Chinese). Acta Hydrobiol Sin, 2007, 31: 718–725Google Scholar
  51. 51.
    Wang D, Mao HL, Chen HX, Liu HQ, Gui JF. Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations. Anim Genet, 2009, 40: 978–981PubMedGoogle Scholar
  52. 52.
    Dan C, Mei J, Wang D, Gui JF. Genetic differentiation and efficient sex-specific marker development of a pair of Y- and X-linked markers in Yellow Catfish. Int J Biol Sci, 2013, 9: 1043–1049PubMedCentralPubMedGoogle Scholar
  53. 53.
    Hulata G. A review of genetic improvement of the common carp (Cyprinus carpio L.) and other hybrids by crossbreeding, hybridization and selection. Aquaculture, 1995, 129: 143–155Google Scholar
  54. 54.
    Kirpichnikov VS, Ilyasov JI, Shart LA, Vikhman AA, Ganchenko MV, Ostashevsky AL, Simonov VM, Tikhonov GF, Tjurin VV. Selection of krasnodar common carp (Cyprinus carpio L.) for resistance to dropsy: principal results and prospects. Aquaculture, 1993, 111: 7–20Google Scholar
  55. 55.
    Zhou J, Wu Q, Wang Z, Ye Y. Genetic variation analysis within and among six varieties of common carp (Cyprinus carpio L.) in China using microsatellite markers. Rus J Genet, 2004, 40: 1144–1148Google Scholar
  56. 56.
    Li SF, He XJ, Han FJ. Third-fifth generation selective evaluation of GIFT strain Nile tilapia. Beijing: World Aquaculture, 2002. 410Google Scholar
  57. 57.
    Liu SJ. Distant hybridization leads to different ploidy fishes. Sci China Life Sci, 2010, 53: 416–425PubMedGoogle Scholar
  58. 58.
    Schwartz FJ. World literature to fish hybrids with an analysis by family, species and hybrid: supplement. NOAA Technical Report NMFS SSRF, 1981, 2: 750Google Scholar
  59. 59.
    Zhang ZH, Chen J, Li L, Tao M, Zhang C, Qin QB, Xiao J, Liu Y, Liu SJ. Research advances in animal distant hybridization. Science China Life Sci, 2014, 44: 161–174Google Scholar
  60. 60.
    Beck ML, Biggers CJ, Dupree HK. Karyological analysis of Hypophthalmichthys molitrix, Aristichthys nobilis and their F1 hybrid. Trans Am Fish Soc, 1980, 109: 433–438Google Scholar
  61. 61.
    Sulaiman AH. Toxicity of malathion to red tilapia (Hybrid Tilapia mossambica×Tilapia nilotica): behavioural, histopathological anti-cholinesterase studies. Mal Appl Biol (Malaysia), 1989, 18: 163–170Google Scholar
  62. 62.
    Harms CA, Kennedy-Stoskopf S, Horne WA, Fuller FJ, Tompkins WA. Cloning and sequencing hybrid striped bass (Morone saxatilis ×M. chrysops) transforming growth factor-beta (TGF-beta), and development of a reverse transcription quantitative competitive polymerase chain reaction (RT-qcPCR) assay to measure TGF-beta mRNA of teleost fish. Fish Shellfish Immunol, 2000, 10: 61–85PubMedGoogle Scholar
  63. 63.
    Sui J, Liu QH, Xiao ZZ, Ma DY, Xu SH, He T, Liu YF, Xiao YS, Li J. The viability, melanophore and embryo genesis of first- and second-generation hybrids between Paralichthys olivaceus and P. dentatus. Mar Biol Res, 2013, 9: 220–226Google Scholar
  64. 64.
    Liu SJ, Liu Y, Zhou GJ, Zhang XJ, Luo C, Feng H, He XX, Zhu GH, Yang H. The formation of tetraploid stocks of red crucian carp×common carp hybrids as an effect of interspecific hybridization. Aquaculture, 2001, 192: 171–186Google Scholar
  65. 65.
    Hu J, Liu SJ, Xiao J, Zhou Y, You CP, He WG, Zhao RR, Song C, Liu Y. Characteristics of diploid and triploid hybrids derived from female Megalobrama amblycephala Yih×male Xenocypris davidi Bleeker. Aquaculture, 2012, (364–365): 157–164Google Scholar
  66. 66.
    He WG, Xie LH, Li TL, Liu SJ, Xiao J, Hu J, Wang J, Qin QB, Liu Y. The formation of diploid and triploid hybrids of female grass carp × male blunt snout bream and their 5S rDNA analysis. BMC Genetics, 2013, 14: 110PubMedCentralPubMedGoogle Scholar
  67. 67.
    Liu SJ, Qin QB, Xiao J, Lu W, Shen J, Li W, Liu J, Duan W, Zhang C, Tao M, Zhao R, Yan J, Liu Y. The formation of the polyploid hybrids from different subfamily fish crossing and its evolutionary significance. Genetics, 2007, 176: 1023–1034PubMedCentralPubMedGoogle Scholar
  68. 68.
    He WG, Qin QB, Liu SJ, Li TL, Wang J, Xiao J, Xie LH, Zhang C, Liu Y. Organization and variation analysis of 5S rDNA in different ploidy-level hybrids of red crucian carp×topmouth culter. PLoS One, 2012, 6: e38976Google Scholar
  69. 69.
    Qin QB, Wang YD, Wang J, Dai J, Xiao J, Hu FZ, Luo KK, Tao M, Zhang C, Liu Y, Liu SJ. The autotetraploid fish derived from hybridization of Carassius auratus red var. (female)×Megalobrama amblycephala (male). Biol Reprod, 2014, 91: 93, 1–11PubMedGoogle Scholar
  70. 70.
    Tung TC, Wu SQ, Ye YF, Yan SY, Du M, Lu DY. Nuclear transplantation of fish. Sci Sin B, 1963, 7: 60–61Google Scholar
  71. 71.
    Chen HX, Yi YL, Chen MR, Yang XQ. Studies on the developmental potentiality of cultured cell nuclei of fish (in Chinese). Acta Hydrobiol Sin, 1986, 10: 1–7Google Scholar
  72. 72.
    Lee KY, Huang HG, Ju BS, Yang Z, Lin S. Cloned zebrafish by nuclear transfer from long-term cultured cells. Nature, 2002, 20: 795–799Google Scholar
  73. 73.
    Yan SY. A historical review and some comments on the nuclear transplantation in fish (in Chinese). Chin J Biotechnol, 2000, 16: 541–547Google Scholar
  74. 74.
    Yu LN, Zuo WG, Fang YL, Zheng WD. Cell-engineering grass carp produced by the combination of electric fusion and nuclear transplantation (in Chinese). J Fish China, 1996, 20: 312–318Google Scholar
  75. 75.
    Yan SY. The nucleo-cytoplasmic interaction as revealed by nuclear transplantation in fish. In: Gytoplasm Organization System. New York: McGraw-Hill Pub. Co., 1989. 61–81Google Scholar
  76. 76.
    Yu LN, Yang YQ, Liu L, Zheng WD, Fang YL. Study on the fish cell nucleus transplant with egg not take off the nucleus as a receptor (in Chinese). Freshw Fish, 1989, 3: 3–7Google Scholar
  77. 77.
    Lin LT, Xia SL, Zhu XP. Studies on nuclear transplantation of somatic cells in teleost. Zool Res, 1996, 17: 337–340Google Scholar
  78. 78.
    Liu HQ, Yi YL, Chen HX. The birth of the androgenetic homozygous diploid loach (in Chinese). Acta Hydrobiol Sin, 1987, 11: 241–246Google Scholar
  79. 79.
    Tajima A, Naito M, Yasuda Y, Kuwana T. Production of germ line chimera by transfer of primordial germ cells in the domestic chicken (Gallus domesticus). Theriogenology, 1993, 40: 509–519PubMedGoogle Scholar
  80. 80.
    Lee YM, Jung JG, Kim JN, Park TS, Kim TM, Shin SS, Kang DK, Lim JM, Han JY. A testis-mediated germline chimera production based on transfer of chicken testicular cells directly into heterologous testes. Biol Reprod, 2006, 75: 380–386PubMedGoogle Scholar
  81. 81.
    Hill JR, Dobrinski I. Male germ cell transplantation in livestock. Reprod Fertil Dev, 2006, 18: 13–18PubMedGoogle Scholar
  82. 82.
    Dobrinski I. Germ cell transplantation and testis tissue xenografting in domestic animals. Anim Reprod Sci, 2005, 89: 137–145PubMedGoogle Scholar
  83. 83.
    Takeuchi Y, Yoshizaki G, Takeuchi T. Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout. Biol Reprod, 2003, 69: 1142–1149PubMedGoogle Scholar
  84. 84.
    Hong YH, Liu T, Zhao H, Xu H, Wang W, Liu R, Chen T, Deng J, Gui J. Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc Natl Acad Sci USA, 2004, 101: 8011–8016PubMedCentralPubMedGoogle Scholar
  85. 85.
    Okutsu T, Suzuki K, Takeuchi Y, Takeuchi T, Yoshizaki G. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci USA, 2006, 103: 2725–2729PubMedCentralPubMedGoogle Scholar
  86. 86.
    Yi MS, Hong N, Hong YH. Generation of medaka fish haploid embryonic stem cells. Science, 2009, 326: 430–433PubMedGoogle Scholar
  87. 87.
    Yi MS, Hong N, Li ZD, Yan Y, Wang D, Zhao H, Hong YH. Medaka fish stem cells and their applications. Sci China Life Sci, 2010, 53: 426–434PubMedGoogle Scholar
  88. 88.
    Nobrega RH, Greebe CD, Kant HX, Bogerd J, Franca LR, Schulz RW. Spermatogonial stem cell niche and spermatogonial stem cell transplantation in zebrafish. PLoS One, 2010, 5: e12808PubMedCentralPubMedGoogle Scholar
  89. 89.
    Takeuchi Y, Yoshizaki G, Takeuchi T. Surrogate broodstock produces salmonids. Nature, 2004, 430: 629–630PubMedGoogle Scholar
  90. 90.
    Majhi SK, Hattori RS, Yokota M, Watanabe S, Strussmann CA. Germ cell transplantation using sexually competent fish: an approach for rapid propagation of endangered and valuable germlines. PLoS One, 2009, 4: e6132PubMedCentralPubMedGoogle Scholar
  91. 91.
    Okutsu T, Shikina S, Kanno M, Takeuchi Y, Yoshizaki G. Production of trout offspring from triploid salmon parents. Science, 2007, 317: 1517PubMedGoogle Scholar
  92. 92.
    Komen H, Thorgaard GH. Androgenesis, gynogenesis and the production of clones in fishes: a review. Aquaculture, 2007, 269: 150–173Google Scholar
  93. 93.
    Liu J, Yang G. Changes in copper content of allogynogenetic silver crucian carp after application of copper sulfate to fishponds. Isr J Aquacult-Bamid, 2009, 61: 351–355Google Scholar
  94. 94.
    Liu SJ, Qin QB, Wang YQ, Zhang H, Zhao R, Zhang C, Wang J, Li W, Chen L, Xiao J, Luo K, Tao M, Duan W, Liu Y. Evidence for the formation of the male gynogenetic fish. Mar Biotechnol, 2010, 12: 160–172PubMedGoogle Scholar
  95. 95.
    Felip A, Zanuy S, Carrillo M, Piferrer F. Induction of triploidy and gynogenesis in teleost fish with emphasis on marine species. Genetica, 2001, 111: 175–195PubMedGoogle Scholar
  96. 96.
    Komen J, Wiegertjes GF, Van Ginneken VJT, Eding EH, Richter CJJ. Gynogenesis in common carp (Cyprinus carpio L.) III. The effects of inbreeding on gonadal development of heterozygous and homozygous gynogenetic offspring. Aquaculture, 1992, 104: 51–66Google Scholar
  97. 97.
    Fopp-Bayat D, Kolman R, Woznicki P. Induction of meiotic gyno genesis in sterlet (Acipenser ruthenus) using UV-irradiated bester sperm. Aquaculture, 2007, 264: 54–58Google Scholar
  98. 98.
    Morgan AJ, Murashige R, Woolridge CA, Luckenbach JA, Watanabe WO, Borski RJ, Godwin J, Daniels HV. Effective UV dose and pressure shock for induction of meiotic gynogenesis in southern flounder Paralichthys lethostigma using black seabass (Centropristis striata) sperm. Aquaculture, 2006, 259: 290–299Google Scholar
  99. 99.
    Piferrer F, Cal RM, Gsmez C, Alvarez-Blazquez B, Castro J, Martinez P. Induction of gynogenesis in the turbot (Scophthalmus maximus): effects of UV irradiation on sperm motility, the Hertwig effect and viability during the first 6 months of age. Aquaculture, 2004, 238: 403–419Google Scholar
  100. 100.
    Rougeot C, Ngingo JV, Gillet L, Vanderplasschen A, Melard C. Gynogenesis induction and sex determination in the Eurasian perch, Perca fluviatilis. Aquaculture, 2005, 43: 411–415Google Scholar
  101. 101.
    Lin F, Dabrowski K. Induction of gynogenesis in muskellunge (Esox masquinongy). Aquaculture, 1995, 137: 153–154Google Scholar
  102. 102.
    Li Q, Kijima A. Microsatellite analysis of gynogenetic families in the Pacific oyster, Crassostrea gigas. J Exp Mar Biol Ecol, 2006, 331: 1–8Google Scholar
  103. 103.
    Sun YD, Tao M, Liu SJ, Zhang C, Duan W, Shen JM, Wang J, Zeng C, Long Y, Liu Y. Induction of gynogenesis in red crucian carp using spermatozoa of blunt snout bream. Prog Nat Sci, 2007, 17: 163–167Google Scholar
  104. 104.
    Sun YD, Zhang C, Liu SJ, Tao M, Zeng C, Liu Y. Induction of gynogenesis in Japanese crucian carp (Carassius cuvieri). Acta Genetica Sinica, 2006, 33: 405–412PubMedGoogle Scholar
  105. 105.
    Zhang H, Liu SJ, Zhang C, Tao M, Peng L, You CP, Xiao J, Zhou Y, Zhou G, Luo KK, Liu Y. Induced gynogenesis in Grass Carp (Ctenopharyngodon idellus) using irradiated sperm of allotetraploid hybrids. Mar Biotechnol, 2010, 13: 1017–1026Google Scholar
  106. 106.
    Liu SJ, Duan W, Tao M, Zhang C, Sun YD, Shen J, Wang J, Luo KK, Liu Y. Establishment of the diploid gynogenetic hybrid clonal line of red crucian carp×common carp. Sci China Ser C-Life Sci, 2007, 50: 186–193Google Scholar
  107. 107.
    Xiao J, Zou TM, Chen YB, Chen L, Liu SJ, Tao M, Zhang C, Zhao RR, Zhou Y, Long Y, You CP, Yan JP, Liu Y. Coexistence of diploid, triploid and tetraploid crucian carp (Carassius auratus) in natural waters. BMC Genetics, 2011, 12: 20PubMedCentralPubMedGoogle Scholar
  108. 108.
    Stanley JG. Production of hybrid, androgenetic and gynogenetic grass carp and carp. T Am Fish Soc, 1976, 105: 10–16Google Scholar
  109. 109.
    Arai K, Onozato H, Yamazaki F. Artificial androgenesis induced with gamma irradiation in masou salmon (oncorhynchus masou). Bull Fac Fish Hokkaido Univ, 1979, 30: 181–186Google Scholar
  110. 110.
    Araki K, Shinma H, Nagoya H, Nakayama I, Onozato H. Androgenetic diploids of rainbow trout (Oncorhynchus mykiss) produced by fused sperm. Can J Fish Aquat Sci, 1995, 52: 892–896Google Scholar
  111. 111.
    Babiak I, Dobosz S, Goryczko K, Kuzminski H, Brzuzan P, Ciesielski S. Androgenesis in rainbow trout using cryopreserved spermatozoa: the effect of processing and biological factors. Theriogenology, 2002, 57: 29249Google Scholar
  112. 112.
    Thorgaard GH, Scheerer PD, Hershberger WK, Myers JM. Androgenetic rainbow trout produced using sperm from tetraploid males show improved survival. Aquaculture, 1990, 85: 215–221Google Scholar
  113. 113.
    Arai K, Ikeno M, Suzuki R. Production of androgenetic diploid loach Misgurnus anguillicaudatus using spermatozoa of natural tetraploids. Aquaculture, 1995, 137: 131–138Google Scholar
  114. 114.
    Fujimoto T, Yasui GS, Hayakawa M, Sakao S, Yamaha E, Arai K. Reproductive capacity of neo-tetraploid loaches produced using diploid spermatozoa from a natural tetraploid male. Aquaculture, 2010, 308: s133–139Google Scholar
  115. 115.
    Sun YD, Zhang C, Liu SJ, Duan W, Liu Y. Induced interspecific androgenesis using diploid sperm from allotetraploid hybrids of common carp×red crucian carp. Aquaculture, 2007, 264: 47–53Google Scholar
  116. 116.
    Duan W, Qin QB, Chen S, Liu SJ, Wang J, Zhang C, Sun YD, Liu Y. The formation of improved tetraploid population of red crucian carp×common carp hybrids by androgenesis. Sci China Ser C-Life Sci, 2007, 50: 753–761Google Scholar
  117. 117.
    Song C, Liu SJ, Xiao J, He WG, Zhou Y, Qin QB, Zhang C, Liu Y. Polyploid organisms. Sci China Life Sci, 2012, 55: 301–311PubMedGoogle Scholar
  118. 118.
    Benfey TJ. The physiology and behavior of triploid fishes. Rev Fish Sci, 1999, 1: 39–67Google Scholar
  119. 119.
    Gui JF, Xiao WH, Liang SC, Jiang YG. Preliminary study on the cytological mechanism of triploidy and tetraploidy induced by hydrostatic pressure shock in transparent colored crucian carp (in Chinese). Acta Hydrobiol Sin, 1995, 19: 49–55Google Scholar
  120. 120.
    Li WL, Xu Y, Deng H, Chen SL, Xie MS, Ji XS. Induction and identification of artificial triploid fry in Cynoglossus semilaevis (in Chinese). J Fish China, 2011, 35: 925–931Google Scholar
  121. 121.
    Wu C, Ye Y, Chen R, Liu X. An artificial multiple triploid carp and its biological characteristics. Aquaculture, 1993, 111: 255–262Google Scholar
  122. 122.
    Gui JF, Zhou L. Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci China Life Sci, 2010, 53: 409–415PubMedGoogle Scholar
  123. 123.
    Wang ZW, Zhu HP, Wang D, Jiang FF, Guo W, Zhou L, Gui JF. A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp. BMC Res Notes, 2011, 4: 82PubMedCentralPubMedGoogle Scholar
  124. 124.
    Chourrout D. Tetraploidy induced by heat shocks in the rainbow trout (Salmo gairdneri R.). Reprod Nutr Dev, 1982, 22: 569–574PubMedGoogle Scholar
  125. 125.
    Bidwell CA, Chrisman CL, Libey G. Polyploidy induced by heat shock in channel catfish. Aquaculture, 1985, 51: 25–32Google Scholar
  126. 126.
    Flajshans M, Linhart O, Kvasnicka P. Genetic studies of tench (Tinea tinea L.): induced triploidy and tetraploidy and first performance data. Aquaculture, 1993,113: 301–312Google Scholar
  127. 127.
    Nam YK, Choi GC, Park DJ, Kim DS. Survival and growth of induced tetraploid mud loach. Aquacult Int, 2001, 9: 61–71Google Scholar
  128. 128.
    Li WL, Chen SL, Ji XS, Xie MS, Xu Y, Deng H. Induction and identification of tetraploid fry in Cynoglossus semilaevis (in Chinese). J Fish Sci China, 2012, 19: 196–201Google Scholar
  129. 129.
    Myers JM. Tetraploid induction in Oreochromis spp. Aquaculture, 1986, 57: 281–287Google Scholar
  130. 130.
    Gui JF, Sun JM, Liang SC, Huang WY, Jiang YG. Studies on genome manipulation in fish II. Tetraploidy induced by hydrostatic pressure treatment and a combination of hydrostatic pressure and cold treatments in transparent colored crucian carp (in Chinese). Acta Hydrobiol Sin, 1991, 15: 333–341Google Scholar
  131. 131.
    Zhu HP, Gui JF. Identification of genome organization in the unusual allotetraploid form of Carassius auratus gibelio. Aquaculture, 2007, 265: 109–117Google Scholar
  132. 132.
    Zou SM, Li SF, Cai WQ, Zhao JL, Yang HY. Establishment of fertile tetraploid population of blunt snout bream (Megalobrama amblycephala). Aquaculture, 2004, 238: 155–164Google Scholar
  133. 133.
    Qin QB, He WG, Liu SJ, Wang J, Xiao J, Liu Y. Analysis of 5S rDNA organization and variation in polyploid hybrids from crosses of different fish subfamilies. J Exp Zool (Mol Dev Evol), 2010, 314: 403–411Google Scholar
  134. 134.
    Liu SJ. Fish Distant Hybridization (in Chinese). Beijing: Science Press, 2015Google Scholar
  135. 135.
    Zhu ZY, Li G, He L, Chen S. Novel gene transfer into fertilized eggs of gold fish (Carassius auratus L.1758). Z Angew Ichthyol, 1985, 1: 31–34Google Scholar
  136. 136.
    Houdebine LM, Chourrout D. Transgenesis in fish. Experientia, 1991, 47: 891–897PubMedGoogle Scholar
  137. 137.
    Rembold M, Lahiri K, Foulkes NS, Wittbrodt J. Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Prot, 2006, 1: 1133–1139Google Scholar
  138. 138.
    Devlin RH. Production and evaluation of transgenic fish for aquaculture. Australas Biotechnol, 1998, 8: 222–226Google Scholar
  139. 139.
    Maclean N, Laight RJ. Transgenic fish: an evaluation of benefits and risks. Fish Fish, 2000, 1: 146–172Google Scholar
  140. 140.
    Fu C, Hu W, Wang Y, Zhu Z. Developments in transgenic fish in the People’s Republic of China. Rev Sci Tech Off Int Epiz, 2005, 24: 299–307Google Scholar
  141. 141.
    Fu C, Cui Y, Hung SSO, Zhu Z. Growth and feed utilization by F4 human growth hormone transgenic carp fed diets with different protein levels. J Fish Biol, 1998, 53: 115–129Google Scholar
  142. 142.
    Wu G, Sun Y, Zhu ZY. Growth hormone gene transfer in common carp. Aquat Living Resour, 2003, 16: 416–420Google Scholar
  143. 143.
    Feng H, Zeng ZQ, Liu SJ, Zhang XJ, Zhou GJ, Li JZ, Liu Y, Wang YP, Chen SP, Hu W, Zhu ZY. Studies of F1 of transgenic allotraploid hybrids of Carassius auratus red var. (♀)×Cyprinus carpio (♂) (in Chinese). Acta Genet Sin, 2002, 29: 434–437PubMedGoogle Scholar
  144. 144.
    Feng H, Fu YM, Luo J, Wu H, Liu Y, Liu SJ. Black carp GH gene transgenic allotetraploid hybrids of Carassius auratus red var. (♀)×Cyprinus carpio (♂). Sci China Life Sci, 2011, 41: 202–209Google Scholar
  145. 145.
    Hew CL, Davies PL, Fletcher G. Antifreeze protein gene transfer in Atlantic salmon. Mol Mar Biol Biotechnol, 1992, 1: 309–317PubMedGoogle Scholar
  146. 146.
    Dunham RA. Transgenic fish resistant to infectious diseases, their risk and prevention of escape into the environment and future candidate genes for disease transgene manipulation. Comp Immunol Microbiol Infect Dis, 2009, 32: 139–161PubMedGoogle Scholar
  147. 147.
    Dunham RA, Warr GW, Nichols A, Duncan PL, Argue B, Middleton D, Kucuktas H. Enhanced bacterial disease resistance of transgenic channel catfish, Ictalarus punctatus, possessing cecropin genes. Mar Biotechnol, 2002, 4: 338–344PubMedGoogle Scholar
  148. 148.
    Mao WF, Wang YP, Wang WB, Wu B, Feng JX, Zhu ZY. Enhanced resistance to Aeromonas hydrophila infection and enhanced phagocytic activities in human lactoferrin-transgenic grass carp (Ctenopharyngodon idellus). Aquaculture, 2004, 242: 93–103Google Scholar
  149. 149.
    Yu F, Xiao J, Liang XY, Liu SJ, Zhou GJ, Luo KK, Liu Y, Hu W, Wang YP, Zhu ZY. Rapid growth and sterility of growth hormone gene transgenic triploid carp. Chin Sci Bull, 2011, 56: 1679–1684Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Kang Xu
    • 1
  • Wei Duan
    • 1
  • Jun Xiao
    • 1
  • Min Tao
    • 1
  • Chun Zhang
    • 1
  • Yun Liu
    • 1
  • ShaoJun Liu
    • 1
  1. 1.Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education of China, College of Life SciencesHunan Normal UniversityChangshaChina

Personalised recommendations