Science China Life Sciences

, Volume 57, Issue 11, pp 1131–1139 | Cite as

RNA-protein distance patterns in ribosomes reveal the mechanism of translational attenuation

Open Access
Research Paper

Abstract

Elucidating protein translational regulation is crucial for understanding cellular function and drug development. A key molecule in protein translation is ribosome, which is a super-molecular complex extensively studied for more than a half century. The structure and dynamics of ribosome complexes were resolved recently thanks to the development of X-ray crystallography, Cryo-EM, and single molecule biophysics. Current studies of the ribosome have shown multiple functional states, each with a unique conformation. In this study, we analyzed the RNA-protein distances of ribosome (2.5 MDa) complexes and compared these changes among different ribosome complexes. We found that the RNA-protein distance is significantly correlated with the ribosomal functional state. Thus, the analysis of RNA-protein binding distances at important functional sites can distinguish ribosomal functional states and help understand ribosome functions. In particular, the mechanism of translational attenuation by nascent peptides and antibiotics was revealed by the conformational changes of local functional sites.

Keywords

ribosome protein translation antibiotics translocation RNA-protein interaction 

References

  1. 1.
    Nakatogawa H, Ito K. The ribosomal exit tunnel functions as a discriminating gate. Cell, 2002, 108: 629–636PubMedCrossRefGoogle Scholar
  2. 2.
    Moore PB. The ribosome returned. J Biol, 2009, 8: 8PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ben-Shem A, Jenner L, Yusupova G, Yusupov M. Crystal structure of the eukaryotic ribosome. Science, 2010, 330: 1203–1209PubMedCrossRefGoogle Scholar
  4. 4.
    Kurkcuoglu O, Doruker P, Sen TZ, Kloczkowski A, Jernigan RL. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics. Phys Biol, 2008, 5: 046005PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Cornish PV, Ermolenko DN, Noller HF, Ha T. Spontaneous intersubunit rotation in single ribosomes. Mol Cell, 2008, 30: 578–588PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Julian P, Konevega AL, Scheres SH, Lazaro M, Gil D, Wintermeyer W, Rodnina MV, Valle M. Structure of ratcheted ribosomes with tRNAs in hybrid states. Proc Natl Acad Sci USA, 2008, 105: 16924–16927PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Tenson T, Ehrenberg M. Regulatory nascent peptides in the ribosomal tunnel. Cell, 2002, 108: 591–594PubMedCrossRefGoogle Scholar
  8. 8.
    Valle M, Zavialov A, Sengupta J, Rawat U, Ehrenberg M, Frank J. Locking and unlocking of ribosomal motions. Cell, 2003, 114: 123–134PubMedCrossRefGoogle Scholar
  9. 9.
    Fredrick K, Ibba M. How the sequence of a gene can tune its translation. Cell, 2010, 141: 227–229PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Weis F, Bron P, Rolland JP, Thomas D, Felden B, Gillet R. Accommodation of tmRNA-SmpB into stalled ribosomes: a cryo-EM study. RNA, 2010, 16: 299–306PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Guda C, Lu S, Scheeff ED, Bourne PE, Shindyalov IN. CE-MC: a multiple protein structure alignment server. Nucleic Acids Res, 2004, 32: W100–103PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science, 2009, 326: 694–699PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB, Kapral GJ, Noeske J, Richardson JS, Blanchard SC, Cate JH. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science, 2011, 332: 981–984PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Adamski FM, Atkins JF, Gesteland RF. Ribosomal protein L9 interactions with 23 S rRNA: the use of a translational bypass assay to study the effect of amino acid substitutions. J Mol Biol, 1996, 261: 357–371PubMedCrossRefGoogle Scholar
  15. 15.
    Ohtani N, Tomita M, Itaya M. An extreme thermophile, Thermus thermophilus, is a polyploid bacterium. J Bacteriol, 2010, 192: 5499–5505PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bulkley D, Innis CA, Blaha G, Steitz TA. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc Natl Acad Sci USA, 2010, 107: 17158–17163PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Samanta D, Das A, Bhattacharya A, Basu A, Das D, DasGupta C. Mechanism of ribosome assisted protein folding: a new insight into rRNA functions. Biochem Biophys Res Commun, 2009, 384: 137–140PubMedCrossRefGoogle Scholar
  18. 18.
    Mitra K, Schaffitzel C, Fabiola F, Chapman MS, Ban N, Frank J. Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements. Mol Cell, 2006, 22: 533–543PubMedCrossRefGoogle Scholar
  19. 19.
    Namy O, Moran SJ, Stuart DI, Gilbert RJ, Brierley I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature, 2006, 441: 244–247PubMedCrossRefGoogle Scholar
  20. 20.
    Demeshkina N, Jenner L, Yusupova G, Yusupov M. Interactions of the ribosome with mRNA and tRNA. Curr Opin Struct Biol, 2010, 20: 325–332PubMedCrossRefGoogle Scholar
  21. 21.
    Ramakrishnan V. The ribosome: some hard facts about its structure and hot air about its evolution. Cold Spring Harb Symp Quant Biol, 2009, 74: 25–33PubMedCrossRefGoogle Scholar
  22. 22.
    Rosorius O, Fries B, Stauber RH, Hirschmann N, Bevec D, Hauber J. Human ribosomal protein L5 contains defined nuclear localization and export signals. J Biol Chem, 2000, 275: 12061–12068PubMedCrossRefGoogle Scholar
  23. 23.
    Clore GM, Iwahara J Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev, 2009, 109: 4108–4139PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gold ND, Jackson RM. SitesBase: a database for structure-based protein-ligand binding site comparisons. Nucleic Acids Res, 2006, 34: D231–234PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Giedroc DP, Cornish PV. Frameshifting RNA pseudoknots: structure and mechanism. Virus Res, 2009, 139: 193–208PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cornish PV, Ermolenko DN, Staple DW, Hoang L, Hickerson RP, Noller HF, Ha T. Following movement of the L1 stalk between three functional states in single ribosomes. Proc Natl Acad Sci USA, 2009, 106: 2571–2576PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Takyar S, Hickerson RP, Noller HF. mRNA helicase activity of the ribosome. Cell, 2005, 120: 49–58PubMedCrossRefGoogle Scholar
  28. 28.
    Williamson JR. Biophysical studies of bacterial ribosome assembly. Curr Opin Struct Biol, 2008, 18: 299–304PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Biological EngineeringUniversity of MissouriColumbiaUSA
  2. 2.C.S. Bond Life Science CenterUniversity of MissouriColumbiaUSA
  3. 3.Department of Computer ScienceUniversity of MissouriColumbiaUSA
  4. 4.Department of BiochemistryUniversity of MissouriColumbiaUSA

Personalised recommendations