Hwang T, Zhang W, Xie M, Liu J, Kuang R. Inferring disease and gene set associations with rank coherence in networks. Bioinformatics, 2011, 27: 2692–2699
PubMed
CAS
Article
Google Scholar
Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol, 2010, 6: e1000641
PubMed
PubMed Central
Article
Google Scholar
Li Y, Agarwal P. A pathway-based view of human diseases and disease relationships. PLoS One, 2009, 4: e4346
PubMed
PubMed Central
Article
Google Scholar
Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of human disease genes. Mol Syst Biol, 2008, 4: 189
PubMed
PubMed Central
Article
Google Scholar
Ma X, Lee H, Wang L, Sun F. CGI: a new approach for prioritizing genes by combining gene expression and protein-protein interaction data. Bioinformatics, 2007, 23: 215–221
PubMed
CAS
Article
Google Scholar
Lage K, Karlberg EO, Størling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, Tümer Z, Pociot F, Tommerup N, Moreau Y, Brunak S. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol, 2007, 25: 309–316
PubMed
CAS
Article
Google Scholar
Chen Y, Wang W, Zhou Y, Shields R, Chanda SK, Elston RC, Li J. In silico gene prioritization by integrating multiple data sources. PLoS One, 2011, 6: e21137
PubMed
CAS
PubMed Central
Article
Google Scholar
Strohman R. Maneuvering in the complex path from genotype to phenotype. Science, 2002, 296: 701–703
PubMed
CAS
Article
Google Scholar
Deng M, Zhang K, Mehta S, Chen T, Sun F. Prediction of protein function using protein-protein interaction data. J Comput Biol, 2003, 10: 947–960
PubMed
CAS
Article
Google Scholar
Deng M, Chen T, Sun F. An integrated probabilistic model for functional prediction of proteins. J Comput Biol, 2004, 11: 463–475
PubMed
CAS
Article
Google Scholar
Kourmpetis YA, van Dijk AD, Bink MC, van Ham RC, ter Braak CJ. Bayesian Markov random field analysis for protein function prediction based on network data. PLoS One, 2010, 5: e9293
PubMed
PubMed Central
Article
Google Scholar
Lee H, Tu Z, Deng M, Sun F, Chen T. Diffusion kernel-based logistic regression models for protein function prediction. OMICS, 2006, 10: 40–55
PubMed
CAS
Article
Google Scholar
Deng M, Tu Z, Sun F, Chen T. Mapping gene ontology to proteins based on protein-protein interaction data. Bioinformatics, 2004, 20: 895–902
PubMed
CAS
Article
Google Scholar
Letovsky S, Kasif S. Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics, 2003, 19: i197–i204
PubMed
Article
Google Scholar
Wei Z, Li H. A Markov random field model for network-based analysis of genomic data. Bioinformatics, 2007, 23: 1537–1544
PubMed
CAS
Article
Google Scholar
Kondor RI, Lafferty J. Diffusion kernels on graphs and other discrete input spaces. In: Proceedings of the Nineteenth International Conference on Machine Learning, San Mateo, USA, 2002. 315–322
Google Scholar
Ma X, Chen T, Sun F. Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks. Brief Bioinform, 2014, 15: 685–698
PubMed
CAS
PubMed Central
Article
Google Scholar
Schölkopf B, Tsuda K, Vert JP. Kernel Methods in Computational Biology. Cambridge: The MIT Press, 2004
Google Scholar
Chen B, Wang J, Wu FX. Prioritizing human disease genes by multiple data integration. In: IEEE International Conference on Bioinformatics and Biomedicine, Shanghai, China, 2013. 621
Google Scholar
Chen B, Wang J, Li M, Wu FX. Identifying disease genes by integrating multiple data sources. BMC Med Genomics, 2014, Suppl2: S2
Article
Google Scholar
Li SZ. Markov Random Field Modeling in Image Analysis. 3rd ed. Berlin Heidelberg: Springer, 2009
Google Scholar
Besag J. Spatial interaction and the statistical analysis of lattice systems. J Royal Statist Soc B, 1974, 36: 192–236
Google Scholar
Kolaczyk ED. Statistical Analysis of Network Data. Berlin Heidelberg: Springer, 2009
Book
Google Scholar
Kamberova G. Markov random field models: a Bayesian approach to computer vision problems. Department of Computer & Information Science Technical Reports, University of Pennsylvania, 1992
Google Scholar
Suess EA, Trumbo BE. Introduction to probability simulation and Gibbs sampling with R. New York: Springer, 2010
Book
Google Scholar
McKsick VA. Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet, 2007, 80: 588–604
Article
Google Scholar
Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci USA, 2007, 104: 8685–8690
PubMed
CAS
PubMed Central
Article
Google Scholar
Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Mewes HW. CORUM: the comprehensive resource of mammalian protein complexes-2009. Nucleic Acids Res, 2010, 38: D497–D501
PubMed
CAS
PubMed Central
Article
Google Scholar
Kikugawa S, Nishikata K, Murakami K, Sato Y, Suzuki M, Altaf-Ul-Amin M, Kanaya S, Imanishi T. PCDq: human protein complex database with quality index which summarizes different levels of evidences of protein complexes predicted from H-invitational protein-protein interactions integrative dataset. BMC Syst Biol, 2012, 6: S7
PubMed
PubMed Central
Article
Google Scholar
Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. Human protein reference database-2009 update. Nucleic Acids Res, 2009, 37: D767–772
PubMed
CAS
PubMed Central
Article
Google Scholar
Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res, 2006, 34: D535–539
PubMed
CAS
PubMed Central
Article
Google Scholar
Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J, Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J, Robbe K, Roechert B, Thorneycroft D, Zhang Y, Apweiler R, Hermjakob H. IntAct-open source resource for molecular interaction data. Nucleic Acids Res, 2007, 35: D561–565
PubMed
CAS
PubMed Central
Article
Google Scholar
Zhao B, Wang J, Li M, Wu, FX, Pan, Y: Detecting protein complexes based on uncertain graph model. IEEE/ACM Trans Comput Biol Bioinform, 2014, 11: 486–497
PubMed
Article
Google Scholar
Wang J, Li M, Chen J, Pan Y. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks. IEEE/ACM Trans Comput Biol Bioinform, 2011, 8: 607–620
PubMed
Article
Google Scholar
Li M, Wu X, Wang J, Pan Y. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinformatics, 2012, 13: 109
PubMed
CAS
PubMed Central
Article
Google Scholar
Li M, Chen J, Wang J, Hu B, Chen G: Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinformatics, 2008, 9: 398
PubMed
PubMed Central
Article
Google Scholar
Wang J, Li M, Wang H, Pan, Y: Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Trans Comput Biol Bioinform, 2012, 9: 1070–1080
PubMed
Article
Google Scholar
Li M, Zheng R, Zhang H, Wang J, Pan Y. Effective identification of essential proteins based on priori knowledge, network topology and gene expressions. Methods, 2014, 67: 325–333
PubMed
CAS
Article
Google Scholar
Tang X, Wang J, Zhong J, Pan Y. Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans Comput Biol Bioinform, 2014, 11: 407–418
PubMed
Article
Google Scholar
Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27–30
PubMed
CAS
PubMed Central
Article
Google Scholar
Vastrik I, D’Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L. Reactome: a knowledge base of biologic pathways and processes. Genome Biol, 2007, 8: R39
PubMed
PubMed Central
Article
Google Scholar
Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther, 2012, 92: 414–417
PubMed
CAS
PubMed Central
Article
Google Scholar
Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: the pathway interaction database. Nucleic Acids Res, 2009, 37: D674–679
PubMed
CAS
PubMed Central
Article
Google Scholar
Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW 3rd, Su AI. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol, 2009, 10: R130
PubMed
PubMed Central
Article
Google Scholar
Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA, 2004, 101: 6062–6067
PubMed
CAS
PubMed Central
Article
Google Scholar
Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet, 2008, 82: 949–958
PubMed
PubMed Central
Article
Google Scholar