Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Science China Life Sciences
  3. Article
Hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p inhibitors can reduce the cytotoxicity of Ebola virus glycoprotein in vitro
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Reticuloendotheliosis virus and avian leukosis virus subgroup J synergistically increase the accumulation of exosomal miRNAs

03 July 2018

Defang Zhou, Jingwen Xue, … Ziqiang Cheng

Exosomal miRNA-328-3p targets ZO-3 and inhibits porcine epidemic diarrhea virus proliferation

11 February 2022

Han Zhao, Jinxin Yang, … Guixue Hu

The protective role of microRNA-21 against coxsackievirus B3 infection through targeting the MAP2K3/P38 MAPK signaling pathway

04 October 2019

Feng He, Zonghui Xiao, … Jianxin Wu

MicroRNA-324-3p Plays A Protective Role Against Coxsackievirus B3-Induced Viral Myocarditis

11 October 2021

Tingjun Liu, Jing Tong, … Hongxing Shen

The expression profile of human peripheral blood mononuclear cell miRNA is altered by antibody-dependent enhancement of infection with dengue virus serotype 3

22 March 2018

Liming Jiang & Qiangming Sun

Mechanism of autophagy induced by activation of the AMPK/ERK/mTOR signaling pathway after TRIM22-mediated DENV-2 infection of HUVECs

31 December 2022

Ning Wu, Xiaoqin Gou, … Li Zuo

Orthohantaviruses belonging to three phylogroups all inhibit apoptosis in infected target cells

29 January 2019

Carles Solà-Riera, Shawon Gupta, … Jonas Klingström

MicroRNA 876-5p modulates EV-A71 replication through downregulation of host antiviral factors

05 February 2020

Peng Xu, Hwa Xu, … Robert Y. L. Wang

Virus-encoded miRNAs in Ebola virus disease

24 April 2018

Janice Duy, Anna N. Honko, … Timothy D. Minogue

Download PDF
  • Research Paper
  • Open Access
  • Published: 13 September 2014

Hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p inhibitors can reduce the cytotoxicity of Ebola virus glycoprotein in vitro

  • MiaoMiao Sheng1,
  • Ying Zhong1,
  • Yang Chen2,
  • JianChao Du1,
  • XiangWu Ju1,
  • Chen Zhao1,
  • GuiGen Zhang1,
  • LiFang Zhang1,
  • KangTai Liu1,
  • Ning Yang1,
  • Peng Xie2,
  • DangSheng Li3,
  • Michael Q. Zhang2,4 &
  • …
  • ChengYu Jiang1,5 

Science China Life Sciences volume 57, pages 959–972 (2014)Cite this article

Abstract

Ebola virus (EBOV) causes a highly lethal hemorrhagic fever syndrome in humans and has been associated with mortality rates of up to 91% in Zaire, the most lethal strain. Though the viral envelope glycoprotein (GP) mediates widespread inflammation and cellular damage, these changes have mainly focused on alterations at the protein level, the role of microRNAs (miRNAs) in the molecular pathogenesis underlying this lethal disease is not fully understood. Here, we report that the mi-RNAs hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p were induced in human umbilical vein endothelial cells (HUVECs) following expression of EBOV GP. Among the proteins encoded by predicted targets of these miRNAs, the adhesion-related molecules tissue factor pathway inhibitor (TFPI), dystroglycan1 (DAG1) and the caspase 8 and FADD-like apoptosis regulator (CFLAR) were significantly downregulated in EBOV GP-expressing HUVECs. Moreover, inhibition of hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p, or overexpression of TFPI, DAG1 and CFLAR rescued the cell viability that was induced by EBOV GP. Our results provide a novel molecular basis for EBOV pathogenesis and may contribute to the development of strategies to protect against future EBOV pandemics.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Colebunders R, Borchert M. Ebola haemorrhagic fever-a review. J Infect, 2000, 40: 16–20

    Article  PubMed  CAS  Google Scholar 

  2. Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, Netesov SV, Nichol ST, Palacios G, Peters CJ, Tenorio A, Volchkov VE, Jahrling PB. Proposal for a revised taxonomy of the family filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch Virol, 2010, 155: 2083–2103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Nkoghe D, Formenty P, Leroy EM, Nnegue S, Edou SY, Ba JI, Allarangar Y, Cabore J, Bachy C, Andraghetti R, de Benoist AC, Galanis E, Rose A, Bausch D, Reynolds M, Rollin P, Choueibou C, Shongo R, Gergonne B, Kone LM, Yada A, Roth C, Mve MT. Multiple Ebola virus haemorrhagic fever outbreaks in gabon, from October 2001 to April 2002. Bull Soc Pathol Exot, 2005, 98: 224–229

    PubMed  CAS  Google Scholar 

  4. Simmons G, Wool-Lewis RJ, Baribaud F, Netter RC, Bates P. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol, 2002, 76: 2518–2528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Peters CJ, LeDuc JW. An introduction to Ebola: the virus and the disease. J Infect Dis, 1999, 179(Suppl 1): ix–xvi

    PubMed  Google Scholar 

  6. Takada A, Watanabe S, Ito H, Okazaki K, Kida H, Kawaoka Y. Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry. Virology, 2000, 278: 20–26

    Article  PubMed  CAS  Google Scholar 

  7. Chan SY, Empig CJ, Welte FJ, Speck RF, Schmaljohn A, Kreisberg JF, Goldsmith MA. Folate receptor-alpha is a cofactor for cellular entry by marburg and Ebola viruses. Cell, 2001, 106: 117–126

    Article  PubMed  CAS  Google Scholar 

  8. Alvarez CP, Lasala F, Carrillo J, Muniz O, Corbi AL, Delgado R. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol, 2002, 76: 6841–6844

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Takada A, Fujioka K, Tsuiji M, Morikawa A, Higashi N, Ebihara H, Kobasa D, Feldmann H, Irimura T, Kawaoka Y. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J Virol, 2004, 78: 2943–2947

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Shimojima M, Takada A, Ebihara H, Neumann G, Fujioka K, Irimura T, Jones S, Feldmann H, Kawaoka Y. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J Virol, 2006, 80: 10109–10116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature, 2011, 477: 340–343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Kondratowicz AS, Lennemann NJ, Sinn PL, Davey RA, Hunt CL, Moller-Tank S, Meyerholz DK, Rennert P, Mullins RF, Brindley M, Sandersfeld LM, Quinn K, Weller M, McCray PB, Jr., Chiorini J, Maury W. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci USA, 2011, 108: 8426–8431

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS, Krishnan A, Ndungo E, Sandesara RG, Carette JE, Kuehne AI, Ruthel G, Pfeffer SR, Dye JM, Whelan SP, Brummelkamp TR, Chandran K. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J, 2012, 31: 1947–1960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. White JM, Schornberg KL. A new player in the puzzle of filovirus entry. Nat Rev Microbiol, 2012, 10: 317–322

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Chan SY, Speck RF, Ma MC, Goldsmith MA. Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Virol, 2000, 74: 4933–4937

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Ito H, Watanabe S, Sanchez A, Whitt MA, Kawaoka Y. Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol, 1999, 73: 8907–8912

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature, 2008, 454: 177–182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Feldmann H, Geisbert TW. Ebola haemorrhagic fever. Lancet, 2011, 377: 849–862

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ray RB, Basu A, Steele R, Beyene A, McHowat J, Meyer K, Ghosh AK, Ray R. Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells. Virology, 2004, 321: 181–188

    Article  PubMed  CAS  Google Scholar 

  20. Yang ZY, Duckers HJ, Sullivan NJ, Sanchez A, Nabel EG, Nabel GJ. Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med, 2000, 6: 886–889

    Article  PubMed  CAS  Google Scholar 

  21. Sullivan N, Yang ZY, Nabel GJ. Ebola virus pathogenesis: implications for vaccines and therapies. J Virol, 2003, 77: 9733–9737

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Sullivan NJ, Peterson M, Yang ZY, Kong WP, Duckers H, Nabel E, Nabel GJ. Ebola virus glycoprotein toxicity is mediated by a dynamin-dependent protein-trafficking pathway. J Virol, 2005, 79: 547–553

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Zampieri CA, Fortin JF, Nolan GP, Nabel GJ. The ERK mitogen-activated protein kinase pathway contributes to Ebola virus glycoprotein-induced cytotoxicity. J Virol, 2006, 81: 1230–1240

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wahl-Jensen VM, Afanasieva TA, Seebach J, Stroher U, Feldmann H, Schnittler HJ. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol, 2005, 79: 10442–10450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Geisbert TW, Young HA, Jahrling PB, Davis KJ, Kagan E, Hensley LE. Mechanisms underlying coagulation abnormalities in Ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis, 2003, 188: 1618–1629

    Article  PubMed  CAS  Google Scholar 

  26. Ruf W. Emerging roles of tissue factor in viral hemorrhagic fever. Trends Immunol, 2004, 25: 461–464

    Article  PubMed  CAS  Google Scholar 

  27. Bray M, Geisbert TW. Ebola virus: the role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever. Int J Biochem Cell Biol, 2005, 37: 1560–1566

    Article  PubMed  CAS  Google Scholar 

  28. Sobarzo A, Ochayon DE, Lutwama JJ, Balinandi S, Guttman O, Marks RS, Kuehne AI, Dye JM, Yavelsky V, Lewis EC, Lobel L. Persistent immune responses after Ebola virus infection. N Engl J Med, 2013, 369: 492–493

    Article  PubMed  CAS  Google Scholar 

  29. Boehm M, Slack FJ. microRNA control of lifespan and metabolism. Cell Cycle, 2006, 5: 837–840

    Article  PubMed  CAS  Google Scholar 

  30. Carleton M, Cleary MA, Linsley PS. microRNAs and cell cycle regulation. Cell Cycle, 2007, 6: 2127–2132

    Article  PubMed  CAS  Google Scholar 

  31. Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari SK. Host-virus interaction: a new role for microRNAs. Retrovirology, 2006, 3: 68

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O. A cellular microRNA mediates antiviral defense in human cells. Science, 2005, 308: 557–560

    Article  PubMed  CAS  Google Scholar 

  33. Motsch N, Pfuhl T, Mrazek J, Barth S, Grasser FA. Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol, 2007, 4: 131–137

    Article  PubMed  CAS  Google Scholar 

  34. Song L, Liu H, Gao S, Jiang W, Huang W. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol, 2010, 84: 8849–8860

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with Tophat and Cufflinks. Nat Prot, 2012, 7: 562–578

    Article  CAS  Google Scholar 

  36. An J, Lai J, Lehman ML, Nelson CC. 2-miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data. Nucleic Acids Res, 2013, 41: 727–737

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Richardson JS, Yao MK, Tran KN, Croyle MA, Strong JE, Feldmann H, Kobinger GP. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine. PLoS One, 2009, 4: e5308

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jia YY, Gao P, Chen HZ, Wan YZ, Zhang R, Zhang ZQ, Yang RF, Wang X, Xu J, Liu DP. SIRT1 suppresses PMA and ionomycin-induced ICAM-1 expression in endothelial cells. Sci China Life Sci, 2013, 56: 19–25

    Article  PubMed  CAS  Google Scholar 

  39. Chan SY, Ma MC, Goldsmith MA. Differential induction of cellular detachment by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Gen Virol, 2000, 81: 2155–2159

    Article  PubMed  CAS  Google Scholar 

  40. Provencal M, Michaud M, Beaulieu E, Ratel D, Rivard GE, Gingras D, Beliveau R. Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration by inhibition of both the Erk pathway and focal adhesion proteins. Thromb Haemost, 2008, 99: 576–585

    PubMed  CAS  Google Scholar 

  41. Chen J, Zhang B, Pan C, Ren L, Chen Y. Effects of monocyte chemotactic protein-3 on ICAM-1, VCAM-1, TF, and TFPI expression and apoptosis in human umbilical vein endothelial cells (in Chinese). Nan Fang Yi Ke Da Xue Xue Bao, 2013, 33: 86–92

    PubMed  Google Scholar 

  42. Belkin AM, Smalheiser NR. Localization of cranin (dystroglycan) at sites of cell-matrix and cell-cell contact: recruitment to focal adhesions is dependent upon extracellular ligands. Cell Adhesion Commun, 1996, 4: 281–296

    Article  CAS  Google Scholar 

  43. Park D, Shim E, Kim Y, Kim YM, Lee H, Choe J, Kang D, Lee YS, Jeoung D. C-FLIP promotes the motility of cancer cells by activating FAK and ERK, and increasing MMP-9 expression. Mol Cells, 2008, 25: 184–195

    PubMed  CAS  Google Scholar 

  44. Winckers K, ten Cate H, Hackeng TM. The role of tissue factor pathway inhibitor in atherosclerosis and arterial thrombosis. Blood Rev, 2013, 27: 119–132

    Article  PubMed  CAS  Google Scholar 

  45. He MX, He YW. CFLAR/c-FLIPL: a star in the autophagy, apoptosis and necroptosis alliance. Autophagy, 2013, 9: 791–793

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hinrichs AS, Learned K, Lee BT, Li CH, Raney BJ, Rhead B, Rosenbloom KR, Sloan CA, Speir ML, Zweig AS, Haussler D, Kuhn RM, Kent WJ. The UCSC Genome Browser database: 2014 update. Nucleic Acids Res, 2014, 42: D764–770

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Alazard-Dany N, Volchkova V, Reynard O, Carbonnelle C, Dolnik O, Ottmann M, Khromykh A, Volchkov VE. Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level. J Gen Virol, 2006, 87: 1247–1257

    Article  PubMed  CAS  Google Scholar 

  48. Herquel B, Ouararhni K, Khetchoumian K, Ignat M, Teletin M, Mark M, Bechade G, van Dorsselaer A, Sanglier-Cianferani S, Hamiche A, Cammas F, Davidson I, Losson R. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc Natl Acad Sci USA, 2011, 108: 8212–8217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Adams M. Tissue factor pathway inhibitor: new insights into an old inhibitor. Semin Thromb Hemost, 2012, 38: 129–134

    Article  PubMed  CAS  Google Scholar 

  50. Geisbert TW, Hensley LE, Jahrling PB, Larsen T, Geisbert JB, Paragas J, Young HA, Fredeking TM, Rote WE, Vlasuk GP. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet, 2003, 362: 1953–1958

    Article  PubMed  CAS  Google Scholar 

  51. Ledgerwood JE, Costner P, Desai N, Holman L, Enama ME, Yamshchikov G, Mulangu S, Hu Z, Andrews CA, Sheets RA, Koup RA, Roederer M, Bailer R, Mascola JR, Pau MG, Sullivan NJ, Goudsmit J, Nabel GJ, Graham BS. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults. Vaccine, 2010, 29: 304–313

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, 100005, China

    MiaoMiao Sheng, Ying Zhong, JianChao Du, XiangWu Ju, Chen Zhao, GuiGen Zhang, LiFang Zhang, KangTai Liu, Ning Yang & ChengYu Jiang

  2. MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing, 100084, China

    Yang Chen, Peng Xie & Michael Q. Zhang

  3. Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China

    DangSheng Li

  4. Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas 800 West Campbell Road, RL11 Richardson, TX, 75080-3021, USA

    Michael Q. Zhang

  5. State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China

    ChengYu Jiang

Authors
  1. MiaoMiao Sheng
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ying Zhong
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Yang Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. JianChao Du
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. XiangWu Ju
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Chen Zhao
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. GuiGen Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. LiFang Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. KangTai Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Ning Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. Peng Xie
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. DangSheng Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. Michael Q. Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. ChengYu Jiang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Michael Q. Zhang or ChengYu Jiang.

Additional information

Contributed equally to this work

This article is published with open access at link.springer.com

Electronic supplementary material

Supplementary material, approximately 2 MB.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheng, M., Zhong, Y., Chen, Y. et al. Hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p inhibitors can reduce the cytotoxicity of Ebola virus glycoprotein in vitro. Sci. China Life Sci. 57, 959–972 (2014). https://doi.org/10.1007/s11427-014-4742-y

Download citation

  • Received: 16 August 2014

  • Accepted: 20 August 2014

  • Published: 13 September 2014

  • Issue Date: October 2014

  • DOI: https://doi.org/10.1007/s11427-014-4742-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Ebola virus
  • glycoprotein
  • microRNAs
  • cytotoxicity
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.