Skip to main content

Advertisement

SpringerLink
Telomerase as a “stemness” enzyme
Download PDF
Download PDF
  • Review
  • Open Access
  • Published: 15 May 2014

Telomerase as a “stemness” enzyme

  • Feng Kong1,
  • ChengYun Zheng2 &
  • DaWei Xu1,3 

Science China Life Sciences volume 57, pages 564–570 (2014)Cite this article

  • 1007 Accesses

  • 34 Citations

  • Metrics details

Abstract

Pluripotent or multipotent stem cells are involved in development and tissue homeostasis; they have the ability to self-renew and differentiate into various types of functional cells. To maintain these properties, stem cells must undergo sustained or unlimited proliferation that requires the stabilization of telomeres, which are essential for chromosome end protection. Telomerase, an RNA-dependent DNA polymerase, synthesizes telomeric DNA. Through the lengthening of telomeres the lifespans of cells are extended, or indefinite proliferation is conferred; this is intimately associated with stem cell phenotype. This review highlights our current understanding of telomerase as a “stemness” enzyme and discusses the underlying implications.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Blackburn EH. Switching and signaling at the telomere. Cell, 2001, 106: 661–673

    Article  PubMed  CAS  Google Scholar 

  2. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell, 2013, 153: 1194–1217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Cheng G, Kong F, Luan Y, Sun C, Wang J, Zhang L, Jiang B, Qi T, Zhao J, Zheng C, Xu D. Differential shortening rate of telomere length in the development of human fetus. Biochem Biophys Res Commun, 2013, 442: 112–115

    Article  PubMed  CAS  Google Scholar 

  4. Holmes DK, Bellantuono I, Walkinshaw SA, Alfirevic Z, Johnston TA, Subhedar NV, Chittick R, Swindell R, Wynn RF. Telomere length dynamics differ in foetal and early post-natal human leukocytes in a longitudinal study. Biogerontology, 2009, 10: 279–284

    Article  PubMed  Google Scholar 

  5. Shay JW, Wright WE. Hallmarks of telomeres in ageing research. J Pathol, 2007, 211: 114–123

    Article  PubMed  CAS  Google Scholar 

  6. Daniel M, Peek GW, Tollefsbol TO. Regulation of the human catalytic subunit of telomerase (hTERT). Gene, 2012, 498: 135–146

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Cong YS, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev, 2002, 66: 407–425

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Rossi DJ, Jamieson CH, Weissman IL. Stems cells and the pathways to aging and cancer. Cell, 2008, 132: 681–696

    Article  PubMed  CAS  Google Scholar 

  9. Rando TA. Stem cells, ageing and the quest for immortality. Nature, 2006, 441: 1080–1086

    Article  PubMed  CAS  Google Scholar 

  10. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131: 861–872

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126: 663–676

    Article  PubMed  CAS  Google Scholar 

  12. Buganim Y, Faddah DA, Jaenisch R. Mechanisms and models of somatic cell reprogramming. Nat Rev Genet, 2013, 14: 427–439

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med, 2009, 15: 1010–1012

    Article  PubMed  CAS  Google Scholar 

  14. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell, 2012, 10: 717–728

    Article  PubMed  CAS  Google Scholar 

  15. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR. Protein composition of catalytically active human telomerase from immortal cells. Science, 2007, 315: 1850–1853

    Article  PubMed  CAS  Google Scholar 

  16. Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature, 1999, 402: 551–555

    Article  PubMed  CAS  Google Scholar 

  17. Vulliamy T, Dokal I. Dyskeratosis congenita. Semin Hematol, 2006, 43: 157–166

    Article  PubMed  CAS  Google Scholar 

  18. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science, 1998, 279: 349–352

    Article  PubMed  CAS  Google Scholar 

  19. Hou M, Wang X, Popov N, Zhang A, Zhao X, Zhou R, Zetterberg A, Björkholm M, Henriksson M, Gruber A, Xu D. The histone deacetylase inhibitor trichostatin A derepresses the telomerase reverse transcriptase (hTERT) gene in human cells. Exp Cell Res, 2002, 274: 25–34

    Article  PubMed  CAS  Google Scholar 

  20. Shay JW, Wright WE. Telomeres and telomerase in normal and cancer stem cells. FEBS Lett, 2010, 584: 3819–3825

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Zeng X. Human embryonic stem cells: mechanisms to escape replicative senescence? Stem Cell Rev, 2007, 3: 270–279

    Article  PubMed  Google Scholar 

  22. Yang C, Przyborski S, Cooke MJ, Zhang X, Stewart R, Anyfantis G, Atkinson SP, Saretzki G, Armstrong L, Lako M. A key role for telomerase reverse transcriptase unit in modulating human embryonic stem cell proliferation, cell cycle dynamics, and in vitro differentiation. Stem Cells, 2008, 26: 850–863

    Article  PubMed  CAS  Google Scholar 

  23. Armstrong L, Lako M, Lincoln J, Cairns PM, Hole N. mTert expression correlates with telomerase activity during the differentiation of murine embryonic stem cells. Mech Dev, 2000, 97: 109–116

    Article  PubMed  CAS  Google Scholar 

  24. Wong CW, Hou PS, Tseng SF, Chien CL, Wu KJ, Chen HF, Ho HN, Kyo S, Teng SC. Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells, 2010, 28: 1510–1517

    Article  PubMed  CAS  Google Scholar 

  25. Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, Hein K, Vogt R, Kemler R. Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science, 2013, 336: 1549–1554

    Article  Google Scholar 

  26. Zhang Y, Toh L, Lau P, Wang X. Telomerase reverse transcriptase (TERT) is a novel target of Wnt/beta-catenin pathway in human cancer. J Biol Chem, 2012, 287: 32494–324511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Coussens M, Davy P, Brown L, Foster C, Andrews WH, Nagata M, Allsopp R. RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1alpha as critical for telomerase function in murine embryonic stem cells. Proc Natl Acad Sci USA, 2010, 107: 13842–13847

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol, 2007, 8: 703–713

    Article  PubMed  CAS  Google Scholar 

  29. Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev, 2008, 22: 654–667

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Chiu CP, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas TE, Harley CB, Lansdorp PM. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells, 1996, 14: 239–248

    Article  PubMed  CAS  Google Scholar 

  31. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA, 1994, 91: 9857–9860

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Morrison SJ, Prowse KR, Ho P, Weissman IL. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity, 1996, 5: 207–216

    Article  PubMed  CAS  Google Scholar 

  33. Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature, 2001, 413: 432–435

    Article  PubMed  CAS  Google Scholar 

  34. Marrone A, Walne A, Tamary H, Masunari Y, Kirwan M, Beswick R, Vulliamy T, Dokal I. Telomerase reverse-transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Blood, 2007, 110: 4198–4205

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Calado RT, Young NS. Telomere diseases. N Engl J Med, 2009, 361: 2353–2365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Vulliamy T, Marrone A, Dokal I, Mason PJ. Association between aplastic anaemia and mutations in telomerase RNA. Lancet, 2002, 359: 2168–2170

    Article  PubMed  CAS  Google Scholar 

  37. Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, Lansdorp PM, Young NS. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med, 2005, 352: 1413–1424

    Article  PubMed  CAS  Google Scholar 

  38. Pignolo RJ, Suda RK, McMillan EA, Shen J, Lee SH, Choi Y, Wright AC, Johnson FB. Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell, 2008, 7: 23–31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Pucci F, Gardano L, Harrington L. Short telomeres in ESCs lead to unstable differentiation. Cell Stem Cell, 2013, 12: 479–486

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Herrera E, Samper E, Martin-Caballero J, Flores JM, Lee HW, Blasco MA. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J, 1999, 18: 2950–2960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Ju Z, Jiang H, Jaworski M, Rathinam C, Gompf A, Klein C, Trumpp A, Rudolph KL. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med, 2007, 13: 742–747

    Article  PubMed  CAS  Google Scholar 

  42. Cong Y, Shay JW. Actions of human telomerase beyond telomeres. Cell Res, 2008, 18: 725–732

    Article  PubMed  CAS  Google Scholar 

  43. Armstrong L, Saretzki G, Peters H, Wappler I, Evans J, Hole N, von Zglinicki T, Lako M. Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells, 2005, 23: 516–529

    Article  PubMed  CAS  Google Scholar 

  44. Flores I, Cayuela ML, Blasco MA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science, 2005, 309: 1253–1256

    Article  PubMed  CAS  Google Scholar 

  45. Sarin KY, Cheung P, Gilison D, Lee E, Tennen RI, Wang E, Artandi MK, Oro AE, Artandi SE. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature, 2005, 436: 1048–1052

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W, Meng Z, Cheung P, Ji H, McLaughlin M, Veenstra TD, Nusse R, McCrea PD, Artandi SE. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature, 2009, 460: 66–72

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 2011, 470: 359–365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature, 2010, 464: 520–528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Gurdon JB, Melton DA. Nuclear reprogramming in cells. Science, 2008, 322: 1811–1815

    Article  PubMed  CAS  Google Scholar 

  50. Campbell KH, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996, 380: 64–66

    Article  PubMed  CAS  Google Scholar 

  51. Suhr ST, Chang EA, Rodriguez RM, Wang K, Ross PJ, Beyhan Z, Murthy S, Cibelli JB. Telomere dynamics in human cells reprogrammed to pluripotency. PLoS ONE, 2009, 4: e8124

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang J, Wang F, Okuka M, Liu N, Ji G, Ye X, Zuo B, Li M, Liang P, Ge WW, Tsibris JC, Keefe DL, Liu L. Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Res, 2013, 21: 779–792

    Article  Google Scholar 

  53. Agarwal S, Loh YH, McLoughlin EM, Huang J, Park IH, Miller JD, Huo H, Okuka M, Dos Reis RM, Loewer S, Ng HH, Keefe DL, Goldman FD, Klingelhutz AJ, Liu L, Daley GQ. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature, 2010, 464: 292–296

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Mathew R, Jia W, Sharma A, Zhao Y, Clarke LE, Cheng X, Wang H, Salli U, Vrana KE, Robertson GP, Zhu J, Wang S. Robust activation of the human but not mouse telomerase gene during the induction of pluripotency. FASEB J, 2012, 24: 2702–2715

    Article  Google Scholar 

  55. Winkler T, Hong SG, Decker JE, Morgan MJ, Wu C, Hughes WM 5th, Yang Y, Wangsa D, Padilla-Nash HM, Ried T, Young NS, Dunbar CE, Calado RT. Defective telomere elongation and hematopoiesis from telomerase-mutant aplastic anemia iPSCs. J Clin Invest, 2013, 123: 1952–1963

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Batista LF, Pech MF, Zhong FL, Nguyen HN, Xie KT, Zaug AJ, Crary SM, Choi J, Sebastiano V, Cherry A, Giri N, Wernig M, Alter BP, Cech TR, Savage SA, Reijo Pera RA, Artandi SE. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature, 2011, 474: 399–402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Xin HW, Hari DM, Mullinax JE, Ambe CM, Koizumi T, Ray S, Anderson AJ, Wiegand GW, Garfield SH, Thorgeirsson SS, Avital I. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division. Stem Cells, 2012, 30: 591–598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Castelo-Branco P, Zhang C, Lipman T, Fujitani M, Hansford L, Clarke I, Harley CB, Tressler R, Malkin D, Walker E, Kaplan DR, Dirks P, Tabori U. Neural tumor-initiating cells have distinct telomere maintenance and can be safely targeted for telomerase inhibition. Clin Cancer Res, 2011, 17: 111–121

    Article  PubMed  CAS  Google Scholar 

  59. Shervington A, Lu C, Patel R, Shervington L. Telomerase downregulation in cancer brain stem cell. Mol Cell Biochem, 2009, 331: 153–159

    Article  PubMed  CAS  Google Scholar 

  60. Marian CO, Wright WE, Shay JW. The effects of telomerase inhibition on prostate tumor-initiating cells. Int J Cancer, 2010, 127: 321–331

    PubMed  CAS  Google Scholar 

  61. Marian CO, Cho SK, McEllin BM, Maher EA, Hatanpaa KJ, Madden CJ, Mickey BE, Wright WE, Shay JW, Bachoo RM. The telomerase antagonist, imetelstat, efficiently targets glioblastoma tumorinitiating cells leading to decreased proliferation and tumor growth. Clin Cancer Res, 2010, 16: 154–163

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Muntoni A, Reddel RR. The first molecular details of ALT in human tumor cells. Hum Mol Genet, 2005, 14(Spec No. 2): R191–196

    Article  PubMed  CAS  Google Scholar 

  63. Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet, 2010, 11: 319–330

    Article  PubMed  CAS  Google Scholar 

  64. Silvestre DC, Pineda JR, Hoffschir F, Studler JM, Mouthon MA, Pflumio F, Junier MP, Chneiweiss H, Boussin FD. Alternative lengthening of telomeres in human glioma stem cells. Stem Cells, 2011, 29: 440–451

    Article  PubMed  CAS  Google Scholar 

  65. Liu Z, Li Q, Li K, Chen L, Li W, Hou M, Liu T, Yang J, Lindvall C, Björkholm M, Jia J, Xu D. Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene, 2013, 32: 4203–4213

    Article  PubMed  CAS  Google Scholar 

  66. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133: 704–715

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Central Research Laboratory, the Second Hospital of Shandong University, Jinan, 250033, China

    Feng Kong & DaWei Xu

  2. Department of Hematology, the Second Hospital of Shandong University, Jinan, 250033, China

    ChengYun Zheng

  3. Department of Medicine, Division of Hematology and Centre for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, SE-171 76, Sweden

    DaWei Xu

Authors
  1. Feng Kong
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. ChengYun Zheng
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. DaWei Xu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to DaWei Xu.

Additional information

This article is published with open access at link.springer.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Zheng, C. & Xu, D. Telomerase as a “stemness” enzyme. Sci. China Life Sci. 57, 564–570 (2014). https://doi.org/10.1007/s11427-014-4666-6

Download citation

  • Received: 16 February 2014

  • Accepted: 06 April 2014

  • Published: 15 May 2014

  • Issue Date: June 2014

  • DOI: https://doi.org/10.1007/s11427-014-4666-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • stem cells
  • telomerase
  • telomere
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.