Skip to main content

Advances in the reintroduction of rare and endangered wild plant species

Abstract

Human disturbance and climate change have increased the risk of extinction for rare and endangered wild plant species. One effective way to conserve these rare and endangered species is through reintroduction. In this review, we summarize the advances in wild plant reintroduction from five perspectives: the establishment of reintroduction biology as an important tool for biodiversity conservation; the importance of genetic diversity in reintroduction; reintroduction under global climate change; recruitment limitation in reintroduction; and reintroduction and ecological restoration. In addition, we consider the future of plant reintroduction strategies.

References

  1. Peng SL. Studies and Practices of Restoration Ecology in Tropical and Subtropical Area. Beijing: Science Press, 2003

    Google Scholar 

  2. Ren H, Zhang QM, Lu HF, Liu H, Guo Q, Wang J, Jian S, Bao H. Wild plant species with extremely small populations require conservation and reintroduction in China. AMBIO, 2012, 41: 913–917

    PubMed  PubMed Central  Article  Google Scholar 

  3. Secretary of the Convention on biodiversity. The Global Strategy for Plant Conservation. 2005

    Google Scholar 

  4. The editorial committee of “China’s strategy for plant conservation. China’s Strategy for Plant Conservation. Guangzhou: Guangdong Sciences and Technology Press, 2008

  5. Ren H. The Theory and Practice of Building Scientific Botanical Gardens. Beijing: Science Press, 2006

    Google Scholar 

  6. Huang HW, Zhang Z. The status and prospect of plant introduction and ex-situ conservation in China. Biodiver, 2012, 20: 559–571

    Google Scholar 

  7. Maunder M. Plant reintroduction: an overview. Biodivers Conserv, 1992, 1: 51–61

    Article  Google Scholar 

  8. Guerrant EO, Kaye TN. Reintroduction of rare and endangered plants: common factors, questions and approaches. Aust J Bot, 2007, 55: 362–370

    Article  Google Scholar 

  9. Griffith B, Scott JM, Carpenter JW, Reed C. Translocation as a species conservation tool: status and strategy. Science, 1989, 245: 477–480

    PubMed  CAS  Article  Google Scholar 

  10. Akeroyd J, Jackson PW. A Handbook for Botanic Gardens on the Reintroduction of Plants to the Wild. Richmond: BGCI, 1995

    Google Scholar 

  11. Ren H, Liu Q, Li LH. Introduction to Restoration Ecology. Beijing: Science Press, 2008

    Google Scholar 

  12. Zhou X, Gao JY. Reintroduction of rare and endangered plant species: theory and practice. Biodiver, 2011, 19: 97–105

    Article  Google Scholar 

  13. Seddon PJ. From reintroduction to assisted colonization: moving along the conservation translocation spectrum. Restor Ecol, 2010, 18: 796–802

    Article  Google Scholar 

  14. Council of Europe. Recommendation No. R.(85)15 of the Committee of Ministers on the reintroduction of wildlife species. 4th Meeting. 1985

    Google Scholar 

  15. IUCN. Guidelines for Re-introductions. Prepared by the IUCN/SSC Re-introduction Specialist Group. IUCN Gland, Switzerland and Cambridge, UK, 1998

    Google Scholar 

  16. IUCN. Guidelines for the in situ Re-introduction and Translocation of African and Asian Rhinoceros. IUCN Gland, Switzerland, 2009

    Google Scholar 

  17. Polak T, Saltz D. Reintroduction as an ecosystem restoration technique. Conserv Biol, 2011, 25: 424–425

    PubMed  Article  Google Scholar 

  18. Maschinski J, Haskins KE. Plant Reintroduction in a Changing Climate: Promises and Perils. Washington, DC: Island Press, 2012

    Book  Google Scholar 

  19. Albrecht MA, Guerrant EO, Maschinski J, Albrecht MA, Guerrant EO, Maschinski J, Kennedy KL. A long-term view of rare plant reintroduction. Biol Conserv, 2011, 144: 2557–2558

    Article  Google Scholar 

  20. Sheean VA, Manning AD, Lindenmayer DB. Armstrong DP, Maloney RF. An assessment of scientific approaches towards species relocations in Australia. Austral Ecology, 2012, 37: 204–215

    Article  Google Scholar 

  21. Macdonald DW, Willis KJ, Moehrenschlager A, Shier DM, Moorhouse TP, Price MRS. Righting past wrongs and ensuring the future. Key Topics Conserv Biol, 2013, 2: 405–429

    Google Scholar 

  22. Falk DA, Millar CI, Olwell M. Restoring Diversity: Strategies for the Reintroduction of Endangered Plants. Washington, DC: Island Press, 1996

    Google Scholar 

  23. Ewen JG, Armstrong DP, Parker KA, Seddon PJ, eds. Reintroduction Biology: Integrating Science and Management. Chichester: John Wiley & Sons, Ltd., 2012

    Google Scholar 

  24. Andel J, Aronson J. Restoration Ecology: The New Frontier. 2nd ed. Blackwell, 2012. 315–359

    Book  Google Scholar 

  25. Kang M, Ye QG, Huang HW. Genetic risks in ex-situ conservation of plants. Hereditas (Beijing), 2005, 27: 160–165

    Google Scholar 

  26. Zhao LL, Sun WB, Yang JB. Development and characterization of microsatellite markers the critically endangered species Acer yangbiense (Aceraceae). Am J Bot, 2011, 98: e247–e249

    PubMed  CAS  Article  Google Scholar 

  27. Sun WB, Yin Q. Ex-situ conserving the Yangbi maple Acer yangbiense in China. Oryx, 2009, 42: 461–462

    Google Scholar 

  28. Wang ZF, Ren H, Li ZC, Zhang QM, Liang KM, Ye WH, Wang ZM. Local genetic structure in the critically endangered, cave-associated perennial herb Primulina tabacum (Gesneriaceae). Biol J Linn Society, 2013, 109: 747–756

    Article  Google Scholar 

  29. Ren H, Zhang QM, Wang ZF, Guo QF, Wang J, Liu N, Liang KM. Conservation and possible reintroduction of an endangered plant based on an analysis of community ecology: a case study of Primulina tabacum Hance in China. Plant Spec Biol, 2010, 25: 43–50

    Article  Google Scholar 

  30. Tollington S, Jones CG, Greenwood A, Tatayahe V, Raisina C, Burkeb T, Dawsonb DA, Groombridgea JJ. Long-term, fine-scale temporal patterns of genetic diversity in the restored Mauritius parakeet reveal genetic impacts of management and associated demographic effects on reintroduction programmes. Biol Conserv, 2013, 161: 28–38

    Article  Google Scholar 

  31. Lauterbach D, Burkart M, Gemeinholzer B. Rapid genetic differentiation between ex situ and their in situ source populations: an example of the endangered Silene otites (Caryophyllaceae). Bot J Linn Soc, 2012, 168: 64–75

    Article  Google Scholar 

  32. Hoegh-Guldberg O, Hughes L, McIntyre S, Lindenmayer DB, Parmesan C, Possingham HP, Thomas CD. Assisted colonization and rapid climate change. Science, 2008, 321: 345–346

    PubMed  CAS  Article  Google Scholar 

  33. Adhikari E, Barika SK, Upadhaya K. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecol Eng, 2012, 40: 37–43

    Article  Google Scholar 

  34. Lawrence BA, Kaye TN. Reintroduction of Castilleja levisecta: effects of ecological similarity, source population genetics, and habitat quality. Restor Ecol, 2011, 19: 166–176

    Article  Google Scholar 

  35. Dalrymple SE, Moehrenschlager A. “Words matter.” A response to Jørgensen’s treatment of historic range and definitions of reintroduction. Restor Ecol, 2013, 21: 156–158

    Article  Google Scholar 

  36. Maschinski J, Wright S J, Koptur S, Pinto-Torres EC. When is local the best paradigm? Breeding history influences conservation reintroduction survival and population trajectories in times of extreme climate events. Biol Conserv, 2013, 159: 277–284

    Article  Google Scholar 

  37. Venesky MD, Mendelson JR, Sears BF, Stiling P, Rohr JR. Selecting for tolerance against pathogens and herbivores to enhance success of reintroduction and translocation. Conserv Biol, 2012, 26: 586–592

    PubMed  Article  Google Scholar 

  38. Ren H, Zeng SJ, Li LN, et al. Community ecology and reintroduction of Tigridiopalma magnifica, a rare and endangered herb. Oryx, 2012, 46: 391–398

    Article  Google Scholar 

  39. Maunder M, Byers O. Technical guidelines on the management of ex situ populations for conservation. Oryx, 2004, 38: 342–346

    Google Scholar 

  40. Schwartz MW, Martin TG. Translocation of imperiled species under changing climates. Ann N Y Acad Sci, 2013, 1286: 15–28

    PubMed  Article  Google Scholar 

  41. Guo QF. Intercontinental biotic invasions: what can we learn from native populations and habitats? Biol Invas, 2006, 8: 1451–1459

    Article  Google Scholar 

  42. Ricciardi A, Simberloff D. Assisted colonization is not a viable conservation strategy. Trends Ecol Evol, 2009, 24: 248–253

    PubMed  Article  Google Scholar 

  43. Wagenius S, Dykstra AB, Ridley CE, Shaw RG. Seedling recruitment in the long-lived perennial, Echinacea angustifolia: a 10-year experiment. Restor Ecol, 2012, 20: 352–359

    Article  Google Scholar 

  44. Ren H, Wang J. Recruitment limitations of native tree species under plantation: a preliminary review. Chin J Appl Ecol, 2007, 18: 1855–1860

    Google Scholar 

  45. Godefroid S, Rucquoij S, Koedam N. To what extent do forest herbs recover after clearcutting in beech forest? Forest Ecol Manag, 2005, 210: 39–53

    Article  Google Scholar 

  46. Vieira DLM, Scariot A. Principles of natural regeneration of tropical dry forests for restoration. Restor Ecol, 2006, 14: 11–20

    Article  Google Scholar 

  47. Wang J, Ren H, Yang L, Duan WJ. Establishment and early growth of introduced indigenous tree species in typical plantations and shrubland in South China. Forest Ecol Manag, 2009, 258: 1293–1300

    Article  Google Scholar 

  48. Guerrant EO, Havens K, Maunder M. Ex-situ Plant Conservation: Supporting Species Survival in the Wild. Washington, DC: Island Press, 2004

    Google Scholar 

  49. Ren H, Yang L, Liu N. Nurse plant theory and its application in ecological restoration in lower-subtropics of China. Prog Naturl Sci, 2008, 18: 137–142

    Article  Google Scholar 

  50. Ren H, Ma GH, Zhang QM, Guo QF, Wang J, Wang ZF. Moss is a key nurse plant for reintroduction of the endangered herb, Primulina tabacum Hance. Plant Ecol, 2010, 209: 313–320

    Article  Google Scholar 

  51. Padilla FM, Pugnaire FI. The role of nurse plants in the restoration of degraded environments. Front iEcol Environ, 2006, 4: 196–202

    Article  Google Scholar 

  52. Yang L, Ren H, Liu N, Wang J. The shrub Rhodomyrtus tomentosa acts as a nurse plant for seedlings differing in shade tolerance in degraded land of South China. J Veg Sci, 2010, 21: 262–272

    Article  Google Scholar 

  53. Drayton B, Primack RB. Success rates for reintroductions of eight perennial plant species after 15 years. Restor Ecol, 2012, 20: 299–303

    Article  Google Scholar 

  54. Pavlik BM. Defining and measuring success. In: Falk DA, Millar CI, Olwell M, eds. Restoring Diversity: Strategies for the Reintroduction of Endangered Plants. Island Press: Washington, DC, 1996. 127–155

    Google Scholar 

  55. Rayburn AP. Recognition and utilization of positive plant interactions may increase plant reintroduction success. Biol Conserv, 2011, 144: 1296

    Article  Google Scholar 

  56. Armstrong DP, Seddon PJ. Directions in reintroduction biology. Trends Ecol Evol, 2008, 23: 20–25

    PubMed  Article  Google Scholar 

  57. Rout TM, Hauser CE, Possingham HP. Minimise long-term loss or maximise short-term gain? Optimal translocation strategies for threatened species. Ecol Model, 2007, 201: 67–74

    Article  Google Scholar 

  58. Godefroid S, Vanderborght T. Plant reintroductions: the need for a global database. Biodivers Conserv, 2011, 20: 3683–3688

    Article  Google Scholar 

  59. Godefroid S, Piazza C, Rossi G, Buord S, Stevens AD, Aguraiuja R, Cowell C, Weekley CW, Vogg G, Iriondo JM, Johnson I, Dixon B, Gordon D, Magnanon S, Valentin B, Bjureke K, Koopman R, Vicens M, Virevaire M, Vanderborght T. How successful are plant species reintroductions? Biol Conserv, 2011, 144: 672–682

    Article  Google Scholar 

  60. Montalvo AM, Williams SL, Rice KJ. Restoration biology: a population biology perspective. Restor Ecol, 1997, 5: 277–290

    Article  Google Scholar 

  61. Rout TM, Hauser CE, Possingham HP. Optimal adaptive management for the translocation of a threatened species. Ecol Appl, 2009, 19: 515–526

    PubMed  Article  Google Scholar 

  62. Jacobs DF, Dalgleish HJ, Nelson CD. A conceptual framework for restoration of threatened plants: the effective model of American chestnut (Castanea dentata) Reintroduction. New Phytol, 2013, 197: 378–393

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hai Ren.

Additional information

This article is published with open access at link.springer.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Jian, S., Liu, H. et al. Advances in the reintroduction of rare and endangered wild plant species. Sci. China Life Sci. 57, 603–609 (2014). https://doi.org/10.1007/s11427-014-4658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-014-4658-6

Keywords

  • reintroduction
  • global change
  • genetic diversity
  • settlement limitation
  • ecological restoration
  • reintroduction biology