Skip to main content

Learning from berberine: Treating chronic diseases through multiple targets

Abstract

Although advances have been made, chemotherapy for chronic, multifactorial diseases such as cancers, Alzheimer’s disease, cardiovascular diseases and diabetes is far from satisfactory. Agents with different mechanisms of action are required. The botanic compound berberine (BBR) has been used as an over-the-counter antibacterial for diarrhea in China for many decades. Recent clinical studies have shown that BBR may be therapeutic in various types of chronic diseases. This review addresses BBR’s molecular mechanisms of action and clinical efficacy and safety in patients with type 2 diabetes, hyperlipidemia, heart diseases, cancers and inflammation. One of the advantages of BBR is its multiple-target effects in each of these diseases. The therapeutic efficacy of BBR may reflect a synergistic regulation of these targets, resulting in a comprehensive effect against these various chronic disorders. The safety of BBR may be due to its harmonious distribution into those targets. Although the single-target concept is still the principle for drug discovery and research, this review emphasizes the concept of a multiple target strategy, which may be an important approach toward the successful treatment of multifactorial chronic diseases.

References

  1. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang J D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med, 2004, 10: 1344–1351

    PubMed  Article  Google Scholar 

  2. Huang Z J, Zeng Y, Lan P, Sun P H, Chen W M. Advances in structural modifications and biological activities of berberine: An active compound in traditional Chinese medicine. Mini Rev Med Chem, 2011, 11: 1122–1129

    PubMed  Article  Google Scholar 

  3. Xie Q, Johnson B R, Wenckus C S, Fayad M I, Wu C D. Efficacy of berberine, an antimicrobial plant alkaloid, as an endodontic irrigant against a mixed-culture biofilm in an in vitro tooth model. J Endod, 2012, 38: 1114–1117

    PubMed  Article  Google Scholar 

  4. Chen Q M, Xie M Z. Studies on the hypoglycemic effect of Coptis chinensis and berberine (in Chinese). Yao Xue Xue Bao, 1986, 21: 401–406

    PubMed  Google Scholar 

  5. Lee Y S, Kim W S, Kim K H, Yoon M J, Cho H J, Shen Y, Ye J M, Lee C H, Oh W K, Kim C T, Hohnen-Behrens C, Gosby A, Kraegen E W, James D E, Kim J B. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes, 2006, 55: 2256–2264

    PubMed  Article  Google Scholar 

  6. Zhang H, Kong W J, Shan Y Q, Song D Q, Li Y, Wang Y M, You X F, Jiang J D. Protein kinase D activation stimulates the transcription of the insulin receptor gene. Mol Cell Endocrinol, 2010, 330: 25–32

    PubMed  Article  Google Scholar 

  7. Chen C, Zhang Y, Huang C. Berberine inhibits PTP1B activity and mimics insulin action. Biochem Biophys Res Commun, 2010, 397: 543–547

    PubMed  Article  Google Scholar 

  8. Xia X, Yan J, Shen Y, Tang K, Yin J, Zhang Y, Yang D, Liang H, Ye J, Weng J. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS ONE, 2011, 6: e16556

    Article  Google Scholar 

  9. Han J, Lin H, Huang W. Modulating gut microbiota as an antidiabetic mechanism of berberine. Med Sci Monit, 2011, 17: RA164–167

    Article  Google Scholar 

  10. Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li M, Zhang C, Zhang Z, Zhang Y, Li X, Ning G, Zhao L. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS ONE, 2012, 7: e42529

    Article  Google Scholar 

  11. Dong H, Wang N, Zhao L, Lu F. Berberine in the treatment of type 2 diabetes mellitus: A systemic review and meta-analysis. Evid Based Complement Alternat Med, 2012, 2012: 591654

    PubMed  PubMed Central  Article  Google Scholar 

  12. di Pierro F, Villanova N, Agostini F, Marzocchi R, Soverini V, Marchesini G. Pilot study on the additive effects of berberine and oral type 2 diabetes agents for patients with suboptimal glycemic control. Diabetes Metab Syndr Obes, 2012, 5: 213–217

    PubMed  PubMed Central  Google Scholar 

  13. Zhang H, Wei J, Xue R, Wu J D, Zhao W, Wang Z Z, Wang S K, Zhou Z X, Song D Q, Wang Y M, Pan H N, Kong W J, Jiang J D. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism, 2010, 59: 285–292

    PubMed  Article  Google Scholar 

  14. Lan T, Shen X, Liu P, Liu W, Xu S, Xie X, Jiang Q, Li W, Huang H. Berberine ameliorates renal injury in diabetic C57BL/6 mice: Involvement of suppression of SphK-S1P signaling pathway. Arch Biochem Biophys, 2010, 502: 112–120

    PubMed  Article  Google Scholar 

  15. Li H, Dong B, Park S W, Lee H S, Chen W, Liu J. Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J Biol Chem, 2009, 284: 28885–28895

    PubMed  PubMed Central  Article  Google Scholar 

  16. Kim W S, Lee Y S, Cha S H, Jeong H W, Choe S S, Lee M R, Oh G T, Park H S, Lee K U, Lane M D, Kim J B. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. Am J Physiol Endocrinol Metab, 2009, 296: E812–819

    Article  Google Scholar 

  17. Brusq J M, Ancellin N, Grondin P, Guillard R, Martin S, Saintillan Y, Issandou M. Inhibition of lipid synthesis through activation of AMP kinase: An additional mechanism for the hypolipidemic effects of berberine. J Lipid Res, 2006, 47: 1281–1288

    PubMed  Article  Google Scholar 

  18. Winiarska M, Bil J, Wilczek E, Wilczynski G M, Lekka M, Engelberts P J, Mackus W J, Gorska E, Bojarski L, Stoklosa T, Nowis D, Kurzaj Z, Makowski M, Glodkowska E, Issat T, Mrowka P, Lasek W, Dabrowska-Iwanicka A, Basak G W, Wasik M, Warzocha K, Sinski M, Gaciong Z, Jakobisiak M, Parren P W, Golab J. Statins impair antitumor effects of rituximab by inducing conformational changes of CD20. PLoS Med, 2008, 5: e64

    Article  Google Scholar 

  19. Antons K A, Williams C D, Baker S K, Phillips P S. Clinical perspectives of statin-induced rhabdomyolysis. Am J Med, 2006, 119: 400e9

  20. Zhao W, Xue R, Zhou Z X, Kong W J, Jiang J D. Reduction of blood lipid by berberine in hyperlipidemic patients with chronic hepatitis or liver cirrhosis. Biomed Pharmacother, 2008, 62: 730–731

    PubMed  Article  Google Scholar 

  21. Beltowski J, Wójcicka G, Jamroz-Wisniewska A. Adverse effects of statins—mechanisms and consequences. Curr Drug Saf, 2009, 4: 209–228

    PubMed  Article  Google Scholar 

  22. Kong W J, Wei J, Zuo Z Y, Wang Y M, Song D Q, You X F, Zhao L X, Pan H N, Jiang J D. Combination of simvastatin with berberine improves the lipid-lowering efficacy. Metabolism, 2008, 57: 1029–1037

    PubMed  Article  Google Scholar 

  23. Kong W J, Zhang H, Song D Q, Xue R, Zhao W, Wei J, Wang Y M, Shan N, Zhou Z X, Yang P, You X F, Li Z R, Si S Y, Zhao L X, Pan H N, Jiang J D. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism, 2009, 58: 109–119

    PubMed  Article  Google Scholar 

  24. Lau C W, Yao X Q, Chen Z Y, Ko W H, Huang Y. Cardiovascular actions of berberine. Cardiovasc Drug Rev, 2001, 19: 234–244

    PubMed  Article  Google Scholar 

  25. Rodriguez-Menchaca A, Ferrer-Villada T, Lara J, Fernandez D, Navarro-Polanco R A, Sanchez-Chapula J A. Block of HERG channels by berberine: Mechanisms of voltage- and state-dependence probed with site-directed mutant channels. J Cardiovasc Pharmacol, 2006, 47: 21–29

    PubMed  Article  Google Scholar 

  26. Wang Y, Huang Y, Lam K S, Li Y, Wong W T, Ye H, Lau C W, Vanhoutte P M, Xu A. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc Res, 2009, 82: 484–492

    PubMed  Article  Google Scholar 

  27. Zeng X H, Zeng X J, Li Y Y. Efficacy and safety of berberine for congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol, 2003, 92: 173–176

    PubMed  Article  Google Scholar 

  28. Marin-Neto J A, Maciel B C, Secches A L, Gallo Júnior L. Cardiovascular effects of berberine in patients with severe congestive heart failure. Clin Cardiol, 1988, 11: 253–260

    PubMed  Article  Google Scholar 

  29. Huang W M. Treating ventricular fast arrhythmias with berberine (in Chinese). Zhong Hua Xin Xue Guan Za Zhi, 1990, 18: 156

    Google Scholar 

  30. Jiang C G, Kuang Y T. Therapeutic efficacy of berberine in 32 arrhythmic patients (in Chinese). Zhong Guo Zhong Xi Yi Jie He Ji Jiu Za Zhi, 1998, 5: 402

    Google Scholar 

  31. Tillhon M, Guamán Ortiz L M, Lombardi P, Scovassi A I. Berberine: New perspectives for old remedies. Biochem Pharmacol, 2012, 84: 1260–1267

    PubMed  Article  Google Scholar 

  32. Li G H, Wang D L, Hu Y D, Pu P, Li D Z, Wang W D, Zhu B, Hao P, Wang J, Xu X Q, Wan J Q, Zhou Y B, Chen Z T. Berberine inhibits acute radiation intestinal syndrome in human with abdomen radiotherapy. Med Oncol, 2010, 27: 919–925

    PubMed  Article  Google Scholar 

  33. Liu Y, Yu H, Zhang C, Cheng Y, Hu L, Meng X, Zhao Y. Protective effects of berberine on radiation-induced lung injury via intercellular adhesion molecular-1 and transforming growth factor-beta-1 in patients with lung cancer. Eur J Cancer, 2008, 44: 2425–2432

    PubMed  Article  Google Scholar 

  34. Zanardi M, Quirico E, Benvenuti C, Pezzana A. Use of a lipidlowering food supplement in patients on hormone therapy following breast cancer. Minerva Ginecol, 2012, 64: 431–435

    PubMed  Google Scholar 

  35. Lou T, Zhang Z, Xi Z, Liu K, Li L, Liu B, Huang F. Berberine inhibits inflammatory response and ameliorates insulin resistance in hepatocytes. Inflammation, 2011, 34: 659–667

    PubMed  Article  Google Scholar 

  36. Choi B H, Ahn I S, Kim Y H, Park J W, Lee S Y, Hyun C K, Do M S. Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte. Exp Mol Med, 2006, 38: 599–605

    PubMed  Article  Google Scholar 

  37. Wu M, Wang J, Liu L T. Advance of studies on anti-atherosclerosis mechanism of berberine. Chin J Integr Med, 2010, 16: 188–192

    PubMed  Article  Google Scholar 

  38. Gu L, Li N, Gong J, Li Q, Zhu W, Li J. Berberine ameliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinemia. J Infect Dis, 2011, 203: 1602–1612

    PubMed  Article  Google Scholar 

  39. Jeong H W, Hsu K C, Lee J W, Ham M, Huh J Y, Shin H J, Kim W S, Kim J B. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am J Physiol Endocrinol Metab, 2009, 296: E955–964

    Article  Google Scholar 

  40. Jiang Q, Liu P, Wu X, Liu W, Shen X, Lan T, Xu S, Peng J, Xie X, Huang H. Berberine attenuates lipopolysaccharide-induced extracellular matrix accumulation and inflammation in rat mesangial cells: Involvement of NF-κB signaling pathway. Mol Cell Endocrinol, 2011, 331: 34–40

    PubMed  Article  Google Scholar 

  41. Pickup J C. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care, 2004, 27: 813–823

    PubMed  Article  Google Scholar 

  42. Cui G, Qin X, Zhang Y, Gong Z, Ge B, Zang Y Q. Berberine differentially modulates the activities of ERK, p38 MAPK, and JNK to suppress Th17 and Th1 T cell differentiation in type 1 diabetic mice. J Biol Chem, 2009, 284: 28420–28429

    PubMed  PubMed Central  Article  Google Scholar 

  43. Sheng Z X, Xie D H. The pro-inflammatory cytokine levels of type 2 diabetic patients and the impact of berberine therapy. New Med, 2010, 41: 177–180

    Google Scholar 

  44. Meng S, Wang L S, Huang Z Q, Zhou Q, Sun Y G, Cao J T, Li Y G, Wang C Q. Berberine ameliorates inflammation in patients with acute coronary syndrome following percutaneous coronary intervention. Clin Exp Pharmacol Physiol, 2012, 39: 406–411

    PubMed  Article  Google Scholar 

  45. Vuddanda P R, Chakraborty S, Singh S. Berberine: A potential phytochemical with multispectrum therapeutic activities. Expert Opin Investig Drugs, 2010, 19: 1297–1307

    PubMed  Article  Google Scholar 

  46. Kulkarni S K, Dhir A. Berberine: A plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res, 2010, 24: 317–324

    PubMed  Article  Google Scholar 

  47. Ye M Z, Fu S, Pi R B, He F. Neuropharmacological and pharmacokinetic properties of berberine: A review of recent research. J Pharm Pharmacol, 2009, 61: 831–837

    PubMed  Article  Google Scholar 

  48. Yki-Järvinen H. Thiazolidinediones. N Engl J Med, 2004, 351: 1106–1118

    PubMed  Article  Google Scholar 

  49. Tolman K G. The safety of thiazolidinediones. Expert Opin Drug Saf, 2011, 10: 419–428

    PubMed  Article  Google Scholar 

  50. Kung J, Henry R R. Thiazolidinedione safety. Expert Opin Drug Saf, 2012, 11: 565–579

    PubMed  Article  Google Scholar 

  51. Cariou B, Charbonnel B, Staels B. Thiazolidinediones and PPARγ agonists: Time for a reassessment. Trends Endocrinol Metab, 2012, 23: 205–215

    PubMed  Article  Google Scholar 

  52. Fitzgerald G A. Coxibs and cardiovascular disease. N Engl J Med, 2004, 351: 1709–1711

    PubMed  Article  Google Scholar 

  53. McAdam B F, Catella-Lawson F, Mardini I A, Kapoor S, Lawson J A, FitzGerald G A. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: The human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci USA, 1999, 96: 272–277

    PubMed  PubMed Central  Article  Google Scholar 

  54. Psaty B M, Furberg C D. COX-2 inhibitors—lessons in drug safety. N Engl J Med, 2005, 352: 1133–1135

    PubMed  Article  Google Scholar 

  55. Kumar G S. RNA targeting by small molecules: Binding of protoberberine, benzophenanthridine and aristolochia alkaloids to various RNA structures. J Biosci, 2012, 37: 539–552

    PubMed  Article  Google Scholar 

  56. Maiti M, Kumar G S. Polymorphic nucleic acid binding of bioactive isoquinoline alkaloids and their role in cancer. J Nucleic Acids, 2010, 2010: 593408

    PubMed  PubMed Central  Article  Google Scholar 

  57. Li Y H, Yang P, Kong W J, Wang Y X, Hu C Q, Zuo Z Y, Wang Y M, Gao H, Gao L M, Feng Y C, Du N N, Liu Y, Song D Q, Jiang J D. Berberine analogues as a novel class of the low-density-lipoprotein receptor up-regulators: Synthesis, structure-activity relationships, and cholesterol-lowering efficacy. J Med Chem, 2009, 52: 492–501

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianDong Jiang.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Kong, W. & Jiang, J. Learning from berberine: Treating chronic diseases through multiple targets. Sci. China Life Sci. 58, 854–859 (2015). https://doi.org/10.1007/s11427-013-4568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-013-4568-z

Keywords

  • chronic multifactorial diseases
  • drug treatment
  • berberine
  • multiple-target