Science China Life Sciences

, Volume 56, Issue 1, pp 1–12 | Cite as

Transcriptome profiling of the developing postnatal mouse testis using next-generation sequencing

  • Wei Gong
  • LinLin Pan
  • Qiang Lin
  • YuanYuan Zhou
  • ChengQi Xin
  • XiaoMin Yu
  • Peng Cui
  • SongNian Hu
  • Jun YuEmail author
Open Access
Cover Article


Mammalian testis development is a complex and highly sophisticated process. To study the dynamic change of normal testis development at the transcriptional level, we investigated mouse testes at three postnatal ages: 6 days postnatal, 4 weeks old, and 10 weeks old, representing infant (PN1), juvenile (PN2), and adult (PN3) stages, respectively. Using ultra high-throughput RNA sequencing (RNA-seq) technology, we obtained 211 million reads with a length of 35 bp. We identified 18837 genes that were expressed in mouse testes, and found that genes expressed at the highest level were involved in spermatogenesis. The gene expression pattern in PN1 was distinct from that in PN2 and PN3, which indicates that spermatogenesis has commenced in PN2. We analyzed a large number of genes related to spermatogenesis and somatic development of the testis, which play important roles at different developmental stages. We also found that the MAPK, Hedgehog, and Wnt signaling pathways were significantly involved at different developmental stages. These findings further our understanding of the molecular mechanisms that regulate testis development. Our study also demonstrates significant advantages of RNA-seq technology for studying transcriptome during development.


next-generation sequencing transcriptome mouse testis development 

Supplementary material

11427_2012_4411_MOESM1_ESM.pdf (966 kb)
Supplementary material, approximately 989 KB.


  1. 1.
    McCarrey J R, O’Brien D A, Skinner M K. Construction and preliminary characterization of a series of mouse and rat testis cDNA libraries. J Androl, 1999, 20: 635–639PubMedGoogle Scholar
  2. 2.
    Su A I, Cooke M P, Ching K A, et al. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA, 2002, 99: 4465–4470PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Tanaka K, Tamura H, Tanaka H, et al. Spermatogonia-dependent expression of testicular genes in mice. Dev Biol, 2002, 246: 466–479PubMedCrossRefGoogle Scholar
  4. 4.
    Rockett J C, Christopher Luft J, Brian Garges J, et al. Development of a 950-gene DNA array for examining gene expression patterns in mouse testis. Genome Biol, 2001, 2: RESEARCH0014PubMedPubMedCentralGoogle Scholar
  5. 5.
    Sha J, Zhou Z, Li J, et al. Identification of testis development and spermatogenesis-related genes in human and mouse testes using cDNA arrays. Mol Hum Reprod, 2002, 8: 511–517PubMedCrossRefGoogle Scholar
  6. 6.
    Pang A L, Taylor H C, Johnson W, et al. Identification of differentially expressed genes in mouse spermatogenesis. J Androl, 2003, 24: 899–911PubMedCrossRefGoogle Scholar
  7. 7.
    Pang A L, Johnson W, Ravindranath N, et al. Expression profiling of purified male germ cells: stage-specific expression patterns related to meiosis and postmeiotic development. Physiol Genomics, 2006, 24: 75–85PubMedCrossRefGoogle Scholar
  8. 8.
    Yu Z, Guo R, Ge Y, et al. Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis. Biol Reprod, 2003, 69: 37–47PubMedCrossRefGoogle Scholar
  9. 9.
    Guo R, Yu Z, Guan J, et al. Stage-specific and tissue-specific expression characteristics of differentially expressed genes during mouse spermatogenesis. Mol Reprod Dev, 2004, 67: 264–272PubMedCrossRefGoogle Scholar
  10. 10.
    Clemente E J, Furlong R A, Loveland K L, et al. Gene expression study in the juvenile mouse testis: identification of stage-specific molecular pathways during spermatogenesis. Mamm Genome, 2006, 17: 956–975PubMedCrossRefGoogle Scholar
  11. 11.
    Schultz N, Hamra F K, Garbers D L. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA, 2003, 100: 12201–12206PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Shima J E, McLean D J, McCarrey J R, et al. The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod, 2004, 71: 319–330PubMedCrossRefGoogle Scholar
  13. 13.
    O’shaughnessy P J, Fleming L, Baker P J, et al. Identification of developmentally regulated genes in the somatic cells of the mouse testis using serial analysis of gene expression. Biol Reprod, 2003, 69: 797–808PubMedCrossRefGoogle Scholar
  14. 14.
    Wu S M, Baxendale V, Chen Y, et al. Analysis of mouse germ-cell transcriptome at different stages of spermatogenesis by SAGE: Biological significance. Genomics, 2004, 84: 971–981PubMedCrossRefGoogle Scholar
  15. 15.
    Yao J, Chiba T, Sakai J, et al. Mouse testis transcriptome revealed using serial analysis of gene expression. Mamm Genome, 2004, 15: 433–451PubMedCrossRefGoogle Scholar
  16. 16.
    Almstrup K. Analysis of cell-type-specific gene expression during mouse spermatogenesis. Biol Reprod, 2004, 70: 1751–1761PubMedCrossRefGoogle Scholar
  17. 17.
    Ellis P J, Furlong R A, Wilson A, et al. Modulation of the mouse testis transcriptome during postnatal development and in selected models of male infertility. Mol Hum Reprod, 2004, 10: 271–281PubMedCrossRefGoogle Scholar
  18. 18.
    Divina P, Vlcek C, Strnad P, et al. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order. BMC Genomics, 2005, 6: 29PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chan W Y, Lee T L, Wu S M, et al. Transcriptome analyses of male germ cells with serial analysis of gene expression (SAGE). Mol Cell Endocrinol, 2006, 250: 8–19PubMedCrossRefGoogle Scholar
  20. 20.
    Lee T L, Cheung H H, Claus J, et al. GermSAGE: a comprehensive SAGE database for transcript discovery on male germ cell development. Nucleic Acids Res, 2009, 37: D891–897PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ike A, Tokuhiro K, Hirose M, et al. Comprehensive analysis of gene expression in testes producing haploid germ cells using DNA microarray analysis. Int J Androl, 2007, 30: 462–475PubMedCrossRefGoogle Scholar
  22. 22.
    Xiao P, Tang A, Yu Z, et al. Gene expression profile of 2058 spermatogenesis-related genes in mice. Biol Pharm Bull, 2008, 31: 201–206PubMedCrossRefGoogle Scholar
  23. 23.
    Waldman Ben-Asher H, Shahar I, Yitzchak A, et al. Expression and chromosomal organization of mouse meiotic genes. Mol Reprod Dev, 2010, 77: 241–248PubMedGoogle Scholar
  24. 24.
    Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5: 621–628PubMedCrossRefGoogle Scholar
  25. 25.
    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10: 57–63PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cui P, Lin Q, Ding F, et al. A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics, 2010, 96: 259–265PubMedCrossRefGoogle Scholar
  27. 27.
    Cui P, Lin Q, Xin C, et al. Hydroxyurea-induced global transcriptional suppression in mouse ES cells. Carcinogenesis, 2010, 31: 1661–1668PubMedCrossRefGoogle Scholar
  28. 28.
    Gentleman R C, Carey V J, Bates D M, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol, 2004, 5: R80PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25–29PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ye J, Fang L, Zheng H, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res, 2006, 34: W293–297PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wang L, Feng Z, Wang X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010, 26: 136–138PubMedCrossRefGoogle Scholar
  32. 32.
    Ogata H, Goto S, Sato K, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res, 1999, 27: 29–34PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27–30PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res, 2006, 34: D354–357PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kanehisa M, Goto S, Furumichi M, et al. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res, 2010, 38: D355–360PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dahlquist K D, Salomonis N, Vranizan K, et al. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet, 2002, 31: 19–20PubMedCrossRefGoogle Scholar
  37. 37.
    Yeh J R, Nagano M C. Spermatogonial stem cell biomarkers: improved outcomes of spermatogonial transplantation in male fertility restoration? Expert Rev Mol Diagn, 2009, 9: 109–114PubMedCrossRefGoogle Scholar
  38. 38.
    Kubota H, Avarbock M R, Brinster R L. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA, 2003, 100: 6487–6492PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Phillips B T, Gassei K, Orwig K E. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci, 2010, 365: 1663–1678PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Suter L, Koch E, Bechter R, et al. Three-parameter flow cytometric analysis of rat spermatogenesis. Cytometry, 1997, 27: 161–168PubMedCrossRefGoogle Scholar
  41. 41.
    Franke F E, Pauls K, Rey R, et al. Differentiation markers of Sertoli cells and germ cells in fetal and early postnatal human testis. Anat Embryol (Berl), 2004, 209: 169–177Google Scholar
  42. 42.
    O’shaughnessy P J, Hu L, Baker P J. Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells. Reproduction, 2008, 135: 839–850PubMedCrossRefGoogle Scholar
  43. 43.
    Haider S G. Cell biology of Leydig cells in the testis. Int Rev Cytol, 2004, 233: 181–241PubMedCrossRefGoogle Scholar
  44. 44.
    O’shaughnessy P J, Willerton L, Baker P J. Changes in Leydig cell gene expression during development in the mouse. Biol Reprod, 2002, 66: 966–975PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang F P, Pakarainen T, Zhu F, et al. Molecular characterization of postnatal development of testicular steroidogenesis in luteinizing hormone receptor knockout mice. Endocrinology, 2004, 145: 1453–1463PubMedCrossRefGoogle Scholar
  46. 46.
    Kanamori M, Konno H, Osato N, et al. A genome-wide and nonredundant mouse transcription factor database. Biochem Biophys Res Commun, 2004, 322: 787–793PubMedCrossRefGoogle Scholar
  47. 47.
    Ravasi T, Suzuki H, Cannistraci C V, et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell, 2010, 140: 744–752PubMedCrossRefGoogle Scholar
  48. 48.
    Zhou Q, Griswold M D. Regulation of spermatogonia. StemBook. Cambridge (MA): Harvard Stem Cell Institute, 2008Google Scholar
  49. 49.
    Sekido R. SRY: A transcriptional activator of mammalian testis determination. Int J Biochem Cell Biol, 2010, 42: 417–420PubMedCrossRefGoogle Scholar
  50. 50.
    Barrionuevo F, Scherer G. SOX E genes: SOX9 and SOX8 in mammalian testis development. Int J Biochem Cell Biol, 2010, 42: 433–436PubMedCrossRefGoogle Scholar
  51. 51.
    Tanaka H, Baba T. Gene expression in spermiogenesis. Cell Mol Life Sci, 2005, 62: 344–354PubMedCrossRefGoogle Scholar
  52. 52.
    Meistrich M L, Mohapatra B, Shirley C R, et al. Roles of transition nuclear proteins in spermiogenesis. Chromosoma, 2003, 111: 483–488PubMedCrossRefGoogle Scholar
  53. 53.
    Nayernia K, Adham I M, Burkhardt-Gottges E, et al. Asthenozoospermia in mice with targeted deletion of the sperm mitochondrion-associated cysteine-rich protein (Smcp) gene. Mol Cell Biol, 2002, 22: 3046–3052PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Anway M D, Ravindranath N, Dym M, et al. Identification of a murine testis complementary DNA encoding a homolog to human A-kinase anchoring protein-associated sperm protein. Biol Reprod, 2002, 66: 1755–1761PubMedCrossRefGoogle Scholar
  55. 55.
    Kierszenbaum A L, Tres L L. Structural and transcriptional features of the mouse spermatid genome. J Cell Biol, 1975, 65: 258–270PubMedCrossRefGoogle Scholar
  56. 56.
    Heidaran M A, Kistler W S. Transcriptional and translational control of the message for transition protein 1, a major chromosomal protein of mammalian spermatids. J Biol Chem, 1987, 262: 13309–13315PubMedGoogle Scholar
  57. 57.
    Kleene K C. Poly(A) shortening accompanies the activation of translation of five mRNAs during spermiogenesis in the mouse. Development, 1989, 106: 367–373PubMedGoogle Scholar
  58. 58.
    Kleene K C, Bagarova J. Comparative genomics reveals gene-specific and shared regulatory sequences in the spermatid-expressed mammalian Odf1, Prm1, Prm2, Tnp1, and Tnp2 genes. Genomics, 2008, 92: 101–106PubMedCrossRefGoogle Scholar
  59. 59.
    Sozubir S, Barber T, Wang Y, et al. Loss of Insl3: a potential predisposing factor for testicular torsion. J Urol, 2010, 183: 2373–2379PubMedCrossRefGoogle Scholar
  60. 60.
    Nakamura N, Mori C, Eddy E M. Molecular complex of three testis-specific isozymes associated with the mouse sperm fibrous sheath: hexokinase 1, phosphofructokinase M, and glutathione S-transferase mu class 5. Biol Reprod, 2010, 82: 504–515PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Valentin M, Balvers M, Pusch W, et al. Structure and expression of the mouse gene encoding the endozepine-like peptide from haploid male germ cells. Eur J Biochem, 2000, 267: 5438–5449PubMedCrossRefGoogle Scholar
  62. 62.
    Selvaraj V, Asano A, Page J L, et al. Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile. Dev Biol, 2010, 348: 177–189PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Dakhova O, O’Day D, Kinet N, et al. Dickkopf-like1 regulates postpubertal spermatocyte apoptosis and testosterone production. Endocrinology, 2009, 150: 404–412PubMedCrossRefGoogle Scholar
  64. 64.
    Choi H S, Lee S H, Kim H, et al. Germ cell-specific gene 1 targets testis-specific poly(A) polymerase to the endoplasmic reticulum through protein-protein interactions. FEBS Lett, 2008, 582: 1203–1209PubMedCrossRefGoogle Scholar
  65. 65.
    Bellve A R, Millette C F, Bhatnagar Y M, et al. Dissociation of the mouse testis and characterization of isolated spermatogenic cells. J Histochem Cytochem, 1977, 25: 480–494PubMedCrossRefGoogle Scholar
  66. 66.
    Tegelenbosch R A, de Rooij D G. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res, 1993, 290: 193–200PubMedCrossRefGoogle Scholar
  67. 67.
    Gassei K, Ehmcke J, Wood M A, et al. Immature rat seminiferous tubules reconstructed in vitro express markers of Sertoli cell maturation after xenografting into nude mouse hosts. Mol Hum Reprod, 2010, 16: 97–110PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Steger K, Rey R, Louis F, et al. Reversion of the differentiated phenotype and maturation block in Sertoli cells in pathological human testis. Hum Reprod, 1999, 14: 136–143PubMedCrossRefGoogle Scholar
  69. 69.
    Dahia C L, Rao A J. Regulation of FSH receptor, PKIbeta, IL-6 and calcium mobilization: Possible mediators of differential action of FSH. Mol Cell Endocrinol, 2006, 247: 73–81PubMedCrossRefGoogle Scholar
  70. 70.
    Heckert L, Griswold M D. Expression of the FSH receptor in the testis. Recent Prog Horm Res, 1993, 48: 61–77PubMedGoogle Scholar
  71. 71.
    Li M W, Mruk D D, Cheng C Y. Mitogen-activated protein kinases in male reproductive function. Trends Mol Med, 2009, 15: 159–168PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gnessi L, Emidi A, Jannini E A, et al. Testicular development involves the spatiotemporal control of PDGFs and PDGF receptors gene expression and action. J Cell Biol, 1995, 131: 1105–1121PubMedCrossRefGoogle Scholar
  73. 73.
    Basciani S, Mariani S, Spera G, et al. Role of platelet-derived growth factors in the testis. Endocr Rev, 2010, 31: 916–939PubMedCrossRefGoogle Scholar
  74. 74.
    Szczepny A, Hime G R, Loveland K L. Expression of hedgehog signalling components in adult mouse testis. Dev Dyn, 2006, 235: 3063–3070PubMedCrossRefGoogle Scholar
  75. 75.
    Bitgood M J, Shen L, McMahon A P. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol, 1996, 6: 298–304PubMedCrossRefGoogle Scholar
  76. 76.
    Golestaneh N, Beauchamp E, Fallen S, et al. Wnt signaling promotes proliferation and stemness regulation of spermatogonial stem/progenitor cells. Reproduction, 2009, 138: 151–162PubMedCrossRefGoogle Scholar
  77. 77.
    Tanwar P S, Kaneko-Tarui T, Zhang L, et al. Constitutive WNT/betacatenin signaling in murine Sertoli cells disrupts their differentiation and ability to support spermatogenesis. Biol Reprod, 2010, 82: 422–432PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ma P, Wang H, Guo R, et al. Stage-dependent Dishevelled-1 expression during mouse spermatogenesis suggests a role in regulating spermatid morphological changes. Mol Reprod Dev, 2006, 73: 774–783PubMedCrossRefGoogle Scholar
  79. 79.
    Hacker A, Capel B, Goodfellow P, et al. Expression of Sry, the mouse sex determining gene. Development, 1995, 121: 1603–1614PubMedGoogle Scholar
  80. 80.
    De Cesare D, Fimia G M, Sassone-Corsi P. CREM, a master-switch of the transcriptional cascade in male germ cells. J Endocrinol Invest, 2000, 23: 592–596PubMedCrossRefGoogle Scholar
  81. 81.
    Blendy J A, Kaestner K H, Weinbauer G F, et al. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature, 1996, 380: 162–165PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Wei Gong
    • 1
    • 2
  • LinLin Pan
    • 1
  • Qiang Lin
    • 1
  • YuanYuan Zhou
    • 1
    • 2
  • ChengQi Xin
    • 1
  • XiaoMin Yu
    • 1
  • Peng Cui
    • 1
  • SongNian Hu
    • 1
  • Jun Yu
    • 1
    Email author
  1. 1.CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations