Skip to main content

Antineoplastic activities of Gd@C82(OH)22 nanoparticles: tumor microenvironment regulation

Abstract

Malignant tumors are complex organs consisting of tumor cells and their microenvironment. Increasing evidence has shown that the tumor microenvironment is critical to the initiation and progression of tumors. Rational design of tumor therapies via targeting the tumor microenvironment to inhibit tumor growth is thus becoming a consensus strategy. Gd@C82(OH)22 nanoparticles, as novel endohedral hydroxylated metallofullerenes, have been demonstrated to be a potent antitumor nanomedicine via targeting multiple factors in the tumor microenvironment. Gd@C82(OH)22 nanoparticles possess excellent biocompatibility and remarkable antineoplastic activity, as a result not of direct tumor cytotoxicity but of their diverse biological effects, including antioxidation, immune activation, angiogenesis inhibition, imprisoning cancer cells, and reversal of drug-resistance. In this article, we summarize the unique nanoscale physiochemical properties and the antineoplastic activities of Gd@C82(OH)22 nanoparticles, and focus on the mechanisms underlying their regulation of the tumor microenvironment.

References

  1. Bissell M J, Radisky D. Putting tumours in context. Nat Rev Cancer, 2001, 1: 46

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  2. Bissell M J, Hines W C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med, 2011, 17: 320–329

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  3. Avastin (bevacizumab) Information. U.S. Food and Drug Adminis-tration. http://www.fda.gov/Drugs/DrugSafety/Postmarket-DrugSafety-InformationforPatientsandProviders/ucm193900.htm

  4. Yan L, Zhao F, Li S F, et al. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale, 2011, 3: 362–382

    PubMed  CAS  Article  Google Scholar 

  5. Qu L, Cao W B, Xing G M, et al. Study of rare earth encapsulated carbon nanomolecules for biomedical uses. J Alloy Compd, 2006, 408/412: 400–404

    Article  Google Scholar 

  6. Xing G M, Yuan H, He R, et al. The strong MRI relaxivity of paramagnetic nanoparticles. J Phys Chem B, 2008, 112: 6288–6291

    PubMed  CAS  Article  Google Scholar 

  7. Chen C Y, Fang X H. Multi hydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett, 2005, 5: 2050–2057

    PubMed  CAS  Article  Google Scholar 

  8. Yin J J, Lao F, Fu P P, et al. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials, 2009, 30: 611–621

    PubMed  CAS  Article  Google Scholar 

  9. Meng H, Xing G M, Sun B Y, et al. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano, 2010, 4: 2773–2783

    PubMed  CAS  Article  Google Scholar 

  10. Wang J X, Chen C, Li B, et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem Pharmacol, 2006, 71: 872–881

    PubMed  CAS  Article  Google Scholar 

  11. Liu Y, Jiao F, Qiu Y, et al. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity. Biomaterials, 2009, 30: 3934–3945

    PubMed  CAS  Article  Google Scholar 

  12. Yang D, Zhao Y L, Guo H, et al. [Gd@C82(OH)22]n nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano, 2010, 4: 1178–1186

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  13. Meng H, Xing G, Blanco E, et al. Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells. Nanomedicine: NBM, 2012, 8: 136–146

    CAS  Article  Google Scholar 

  14. Tang J, Xing G, Yuan H, et al. Tuning electronic properties of metallic atom in bondage to a nanospace. J Phys Chem B, 2005, 109: 8779–8785

    PubMed  CAS  Article  Google Scholar 

  15. Tang J, Xing G, Zhao Y, et al. Periodical variation of electronic properties in polyhydroxylated metallofullerene materials. Adv Mater, 2006, 18: 1458–1462

    CAS  Article  Google Scholar 

  16. Cheng Y, Liu K M, Xing G, et al. Study of multihydroxylated processes of Gd@C82 by ICP-MASS. J Radioanal Nucl Chem, 2007, 272: 537–540

    CAS  Article  Google Scholar 

  17. Tang J, Xing G M, Zhao F, et al. Modulation of structural and electronic properties of fullerene and metallofullerenes by surface chemical modifications. J Nanosci Nanotechnol, 2007, 7: 1085–1101

    PubMed  CAS  Article  Google Scholar 

  18. Yue D M, Bai X J, Zhao S X, et al. First endohedral metallo-fullerene-containing polymer: preparation and characterization of Gd@C82-Polystyrene. J Phys Chem C, 2010, 114: 7631–7636

    CAS  Article  Google Scholar 

  19. Tang J, Xing G, Yuan H, et al. 5p Electronic properties of Gd in Gd@C82(OH)x studied by synchrotron radiation XPS. J Radioanal Nucl Chem, 2007, 272: 307–310

    CAS  Article  Google Scholar 

  20. Tang J, Xing G, Zhao Y, et al. Switchable semiconductive property of the polyhydroxylated metallofullerene. J Phys Chem B, 2007, 111: 11929–11934

    PubMed  CAS  Article  Google Scholar 

  21. Zhao S X, Zhang J, Dong J Q, et al. Scanning tunneling microscopy investigation of substrate-dependent adsorption and assembly of metallofullerene Gd@C82 on Cu(111) and Cu(100). J Phys Chem C, 2011, 115: 6265–6268

    CAS  Article  Google Scholar 

  22. Zhang W D, Sun B, Zhang L, et al. Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans. Nanoscale, 2011, 3: 2636–2641

    PubMed  CAS  Article  Google Scholar 

  23. Yin J J, Lao F, Meng J, et al. Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol Pharmacol, 2008, 74: 1132–1140

    PubMed  CAS  Article  Google Scholar 

  24. Liang X J, Meng H, Wang Y, et al. Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc Natl Acad Sci USA, 2010, 107: 7449–7454

    PubMed  CAS  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangJun Nie.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Li, Y., Tian, Y. & Nie, G. Antineoplastic activities of Gd@C82(OH)22 nanoparticles: tumor microenvironment regulation. Sci. China Life Sci. 55, 884–890 (2012). https://doi.org/10.1007/s11427-012-4387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-012-4387-7

Keywords

  • Gd@C82(OH)22
  • antineoplastic nanoparticles
  • tumor microenvironment