Advertisement

Science China Life Sciences

, Volume 55, Issue 6, pp 483–496 | Cite as

Phylogeny and evolutionary history of the silkworm

  • Wei Sun
  • HongSong Yu
  • YiHong Shen
  • Yutaka Banno
  • ZhongHuai Xiang
  • Ze Zhang
Open Access
Research Paper

Abstract

The silkworm, Bombyx mori, played an important role in the old Silk Road that connected ancient Asia and Europe. However, to date, there have been few studies of the origins and domestication of this species using molecular methods. In this study, DNA sequences of mitochondrial and nuclear loci were used to infer the phylogeny and evolutionary history of the domesticated silkworm and its relatives. All of the phylogenetic analyses indicated a close relationship between the domesticated silkworm and the Chinese wild silkworm. Domestication was estimated to have occurred about 4100 years ago (ya), and the radiation of the different geographic strains of B. mori about 2000 ya. The Chinese wild silkworm and the Japanese wild silkworm split about 23600 ya. These estimates are in good agreement with the fossil evidence and historical records. In addition, we show that the domesticated silkworm experienced a population expansion around 1000 ya. The divergence times and the population dynamics of silkworms presented in this study will be useful for studies of lepidopteran phylogenetics, in the genetic analysis of domestic animals, and for understanding the spread of human civilizations.

Keywords

silkworm domestication divergence time population dynamic population expansion 

Supplementary material

11427_2012_4334_MOESM1_ESM.pdf (429 kb)
Supplementary material, approximately 429 KB.

References

  1. 1.
    Astaurov B L, Rovinskaya I S. Chromosome complex of Ussuri geographical race of Bombyx mandarina M. with special reference to the problem of the origin of the domesticated silkworm, Bombyx mori. Cytology, 1959, 1: 327–332Google Scholar
  2. 2.
    Banno Y, Nakamura T, Nagashima E, et al. M chromosome of the wild silkworm, Bombyx mandarina (n=27), corresponds to two chromosomes in the domesticated silkworm, Bombyx mori (n=28). Genome, 2004, 47: 96–101PubMedCrossRefGoogle Scholar
  3. 3.
    Chikushi H. Genes and genetical stocks of the silkworm. Tokyo: Keigaku Pub. Co., 1972Google Scholar
  4. 4.
    Yoshitake N. Phylogenetic aspects on the origin of Japanese race of the silkworm, Bombyx mori L. J Sericol Sci Japan, 1968, 37: 83–87Google Scholar
  5. 5.
    Shimada T, Kurimoto Y, Kobayashi M. Phylogenetic relationship of silkmoths inferred from sequence data of the arylphorin gene. Mol Phylogenet Evol, 1995, 4: 223–234PubMedCrossRefGoogle Scholar
  6. 6.
    Arunkumar K P, Metta M, Nagaraju J. Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA. Mol Phylogenet Evol, 2006, 40: 419–427PubMedCrossRefGoogle Scholar
  7. 7.
    Li A, Zhao Q, Tang S, et al. Molecular phylogeny of the domesticated silkworm, Bombyx mori, based on the sequences of mitochondrial cytochrome b genes. J Genetics, 2005, 84: 137–142CrossRefGoogle Scholar
  8. 8.
    Li D, Guo Y, Shao H, et al. Genetic diversity, molecular phylogeny and selection evidence of the silkworm mitochondria implicated by complete resequencing of 41 genomes. BMC Evol Biol, 2010, 10: 81PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Xia Q, Guo Y, Zhang Z, et al. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science, 2009, 326: 433–436PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Liu X. The Silk Road in World History. USA: Oxford University Press, 2010Google Scholar
  11. 11.
    Pan M, Yu Q, Xia Y, et al. Characterization of mitochondrial genome of Chinese wild mulberry silkworm, Bombyx mandarina (Lepidoptera: Bombycidae). Sci China Ser C-Life Sci, 2008, 51: 693–701CrossRefGoogle Scholar
  12. 12.
    Yukuhiro K, Sezutsu H, Itoh M, et al. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol, 2002, 19: 1385–1389PubMedCrossRefGoogle Scholar
  13. 13.
    Nagaraja G M, Nagaraju J. Genome fingerprinting of the silkworm, Bombyx mori, using random arbitrary primers. Electrophoresis, 1995, 16: 1633–1638PubMedCrossRefGoogle Scholar
  14. 14.
    Regier J C, Fang Q Q, Mitter C, et al. Evolution and phylogenetic utility of the period gene in Lepidoptera. Mol Biol Evol, 1998, 15: 1172–1182PubMedCrossRefGoogle Scholar
  15. 15.
    Futahashi R, Sato J, Meng Y, et al. yellow and ebony are the responsible genes for the larval color mutants of the silkworm Bombyx mori. Genetics, 2008, 180: 1995–2005PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yu H S, Shen Y H, Yuan G X, et al. Evidence of selection at melanin synthesis pathway loci during silkworm domestication. Mol Biol Evol, 2011, 28: 1785–1799PubMedCrossRefGoogle Scholar
  17. 17.
    Hashimoto K, Yamano Y, Morishima I. Induction of tyrosine hydroxylase gene expression by bacteria in the fat body of eri-silkworm, Samia cynthia ricini. Comp Biochem Phys B, 2008, 149: 501–506CrossRefGoogle Scholar
  18. 18.
    Hilton H, Gaut B S. Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Genetics, 1998, 150: 863–872PubMedPubMedCentralGoogle Scholar
  19. 19.
    Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 2004, 32: 1792PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Farris J S, Kllersj M, Kluge A G, et al. Testing significance of incongruence. Cladistics, 1994, 10: 315–319CrossRefGoogle Scholar
  21. 21.
    Swofford D L. PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4. 2003Google Scholar
  22. 22.
    Posada D. ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res, 2006, 34: 700–703CrossRefGoogle Scholar
  23. 23.
    Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 2003, 52: 696–704PubMedCrossRefGoogle Scholar
  24. 24.
    Ronquist F, Huelsenbeck J P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, 19: 1572–1574PubMedCrossRefGoogle Scholar
  25. 25.
    Nylander J A, Wilgenbusch J C, Warren D L, et al. AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics, 2008, 24: 581–583PubMedCrossRefGoogle Scholar
  26. 26.
    Bandelt H J, Forster P, Rhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol, 1999, 16: 37–48PubMedCrossRefGoogle Scholar
  27. 27.
    Martin D P, Lemey P, Lott M, et al. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics, 2010, 26: 2462–2463PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Drummond A J, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol, 2007, 7: 214PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sanderson M J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 2003, 19: 301–302PubMedCrossRefGoogle Scholar
  30. 30.
    Underhill A P. Current issues in Chinese neolithic archaeology. J World Prehistory, 1997, 11: 103–160CrossRefGoogle Scholar
  31. 31.
    Gu G D, Xu J L. On the hearths of sericulture in China (in Chinese). J Zhejiang Univ Nationalities, 2003, 33: 42–48Google Scholar
  32. 32.
    Sanderson M J. A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol, 1997, 14: 1218–1231CrossRefGoogle Scholar
  33. 33.
    Sanderson M J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol, 2002, 19: 101–109PubMedCrossRefGoogle Scholar
  34. 34.
    Eriksson T. r8s Bootstrap Kit. Stockholm: Bergius Botanic Garden, 2002Google Scholar
  35. 35.
    Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform, 2005, 1: 47–50Google Scholar
  36. 36.
    Fu Y X, Li W H. Statistical tests of neutrality of mutations. Genetics, 1993, 133: 693–709PubMedPubMedCentralGoogle Scholar
  37. 37.
    Goldsmith M R, Shimada T, Abe H. The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol, 2005, 50: 71–100PubMedCrossRefGoogle Scholar
  38. 38.
    Bradley D G, MacHugh D E, Cunningham P, et al. Mitochondrial diversity and the origins of African and European cattle. Proc Natl Acad Sci USA, 1996, 93: 5131–5135PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fang M, Andersson L. Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proc Biol Sci, 2006, 273: 1803–1810PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Joy D A, Feng X, Mu J, et al. Early origin and recent expansion of Plasmodium falciparum. Science, 2003, 300: 318–321PubMedCrossRefGoogle Scholar
  41. 41.
    Rogers A R, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol, 1992, 9: 552–569PubMedGoogle Scholar
  42. 42.
    Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 1997, 147: 915–925PubMedPubMedCentralGoogle Scholar
  43. 43.
    Bilgin R, Karatas A, Coraman E, et al. Regionally and climatically restricted patterns of distribution of genetic diversity in a migratory bat species, Miniopterus schreibersii (Chiroptera: Vespertilionidae). BMC Evol Biol, 2008, 8: 209PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Robertson D L, Sharp P M, McCutchan F E, et al. Recombination in HIV-1. Nature, 1995, 374: 124PubMedCrossRefGoogle Scholar
  45. 45.
    Sanderson M J, Doyle J J. Reconstruction of organismal and gene phylogenies from data on multigene families: concerted evolution, homoplasy, and confidence. Syst Biol, 1992, 41: 4–17CrossRefGoogle Scholar
  46. 46.
    Zhou J, Bowler L D, Spratt B G. Interspecies recombination, and phylogenetic distortions, within the glutamine synthetase and shikimate dehydrogenase genes of Neisseria meningitidis and commensal Neisseria species. Mol Microbiol, 1997, 23: 799–812PubMedCrossRefGoogle Scholar
  47. 47.
    Lau A N, Peng L, Goto H, et al. Horse domestication and conservation genetics of Przewalski’s horse inferred from sex chromosomal and autosomal sequences. Mol Biol Evol, 2009, 26: 199–208PubMedCrossRefGoogle Scholar
  48. 48.
    Klein J, Sato A, Nagl S, et al. Molecular trans-species polymorphism. Ann Rev Ecol System, 1998, 29: 1–21CrossRefGoogle Scholar
  49. 49.
    Gleason C. The Biography of Silk. St. Catharines: Crabtree Publishing Company, 2006Google Scholar
  50. 50.
    Robinson R. Relaxing the clock brings time back into phylogenetics. Plos Biol, 2006, 4: e106PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gupta A K. Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Curr Sci, 2004, 87: 54–59Google Scholar
  52. 52.
    Maekawa H, Takada N, Mikitani K, et al. Nucleolus organizers in the wild silkworm Bombyx mandarina and the domesticated silkworm B. mori. Chromosoma, 1988, 96: 263–269CrossRefGoogle Scholar
  53. 53.
    Nakamura T, Banno Y, Nakada T, et al. Geographic dimorphism of the wild silkworm, Bombyx mandarina, in the chromosome number and the occurrence of a retroposon-like insertion in the arylphorin gene. Genome, 1999, 42: 1117–1120PubMedCrossRefGoogle Scholar
  54. 54.
    Santos C, Montiel R, Sierra B, et al. Understanding differences between phylogenetic and pedigree-derived mtDNA mutation rate: a model using families from the Azores Islands (Portugal). Mol Biol Evol, 2005, 22: 1490–1505PubMedCrossRefGoogle Scholar
  55. 55.
    Lambert D, Ritchie P, Millar C, et al. Rates of evolution in ancient DNA from Adelie penguins. Science, 2002, 295: 2270–2273PubMedCrossRefGoogle Scholar
  56. 56.
    Edwards C J, Bollongino R, Scheu A, et al. Mitochondrial DNA analysis shows a Near Eastern neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proc Biol Sci, 2007, 274: 1377–1385PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Beckenbach A T, Wei Y W, Liu H. Relationships in the Drosophila obscura species group, inferred from mitochondrial cytochrome oxidase II sequences. Mol Biol Evol, 1993, 10: 619–634PubMedGoogle Scholar
  58. 58.
    Zakharov E V, Caterino M S, Sperling F A. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst Biol, 2004, 53: 193–215PubMedCrossRefGoogle Scholar
  59. 59.
    Crozier R, Crozier Y, Mackinlay A. The CO-I and CO-II region of honeybee mitochondrial DNA: evidence for variation in insect mitochondrial evolutionary rates. Mol Biol Evol, 1989, 6: 399–411PubMedGoogle Scholar
  60. 60.
    Ho S Y, Phillips M J, Cooper, et al. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol, 2005, 22: 1561–1568PubMedCrossRefGoogle Scholar
  61. 61.
    Ho S Y, Larson G. Molecular clocks: when timesare a-changin. Trends Genet, 2006, 22: 79–83PubMedCrossRefGoogle Scholar
  62. 62.
    Marko P B. Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol Biol Evol, 2002, 19: 2005–2021PubMedCrossRefGoogle Scholar
  63. 63.
    Benton M J, Ayala F J. Dating the tree of life. Science, 2003, 300: 1698–1700PubMedCrossRefGoogle Scholar
  64. 64.
    Ho S Y, Phillips M J. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol, 2009, 58: 367–380PubMedCrossRefGoogle Scholar
  65. 65.
    Luikart G, Gielly L, Excoffier L, et al. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc Natl Acad Sci USA, 2001, 98: 5927–5932PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lo C. Environmental impact on the development of agricultural technology in China: the case of the dike-pond (“jitang’) system of integrated agriculture-aquaculture in the Zhejiang Delta of China. Agr Ecosyst Environ, 1996, 60: 183–195CrossRefGoogle Scholar
  67. 67.
    Bray F. The case of China. Education about Asia, 2004, 9: 14–20Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Wei Sun
    • 1
  • HongSong Yu
    • 1
  • YiHong Shen
    • 1
  • Yutaka Banno
    • 2
  • ZhongHuai Xiang
    • 1
  • Ze Zhang
    • 1
    • 3
  1. 1.Institute of Sericulture and Systems BiologySouthwest UniversityChongqingChina
  2. 2.Institute of Genetic Resources, Graduate School of Bioresource and Bioenvironmental SciencesKyushu UniversityFukuokaJapan
  3. 3.Institute of Agricultural and Life SciencesChongqing UniversityChongqingChina

Personalised recommendations