Science China Life Sciences

, Volume 55, Issue 6, pp 516–520 | Cite as

Bivariate genome-wide association study suggests that the DARC gene influences lean body mass and age at menarche

  • Rong Hai
  • Lei Zhang
  • YuFang Pei
  • LanJuan Zhao
  • Shu Ran
  • YingYing Han
  • XueZhen Zhu
  • Hui Shen
  • Qing Tian
  • HongWen Deng
Open Access
Research Paper

Abstract

Lean body mass (LBM) and age at menarche (AAM) are two important complex traits for human health. The aim of this study was to identify pleiotropic genes for both traits using a powerful bivariate genome-wide association study (GWAS). Two studies, a discovery study and a replication study, were performed. In the discovery study, 909622 single nucleotide polymorphisms (SNPs) were genotyped in 801 unrelated female Han Chinese subjects using the Affymetrix human genome-wide SNP array 6.0 platform. Then, a bivariate GWAS was performed to identify the SNPs that may be important for LBM and AAM. In the replication study, significant findings from the discovery study were validated in 1692 unrelated Caucasian female subjects. One SNP rs3027009 that was bivariately associated with left arm lean mass and AAM in the discovery samples (P=7.26×10−6) and in the replication samples (P=0.005) was identified. The SNP is located at the upstream of DARC (Duffy antigen receptor for chemokines) gene, suggesting that DARC may play an important role in regulating the metabolisms of both LBM and AAM.

Keywords

bivariate genome-wide association study age at menarche lean body mass DARC gene 

References

  1. 1.
    Sipila S, Heikkinen E, Cheng S, et al. Endogenous hormones, muscle strength, and risk of fall-related fractures in older women. J Gerontol A Biol Sci Med Sci, 2006, 61: 92–96PubMedCrossRefGoogle Scholar
  2. 2.
    Karakelides H, Nair K S. Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol, 2005, 68: 123–148PubMedCrossRefGoogle Scholar
  3. 3.
    Hansen R D, Raja C, Aslani A, et al. Determination of skeletal muscle and fat-free mass by nuclear and dual-energy x-ray absorptiometry methods in men and women aged 51–84 y (1–3). Am J Clin Nutr, 1999, 70: 228–233PubMedGoogle Scholar
  4. 4.
    Hsu F C, Lenchik L, Nicklas B J, et al. Heritability of body composition measured by DXA in the diabetes heart study. Obes Res, 2005, 13: 312–319PubMedCrossRefGoogle Scholar
  5. 5.
    Keen-Kim D, Mathews C A, Reus V I, et al. Overrepresentation of rare variants in a specific ethnic group may confuse interpretation of association analyses. Hum Mol Genet, 2006, 15: 3324–3328PubMedCrossRefGoogle Scholar
  6. 6.
    Nguyen T V, Howard G M, Kelly P J, et al. Bone mass, lean mass, and fat mass: same genes or same environments? Am J Epidemiol, 1998, 147: 3–16PubMedCrossRefGoogle Scholar
  7. 7.
    Wang X L, Deng F Y, Tan L J, et al. Bivariate whole genome linkage analyses for total body lean mass and BMD. J Bone Miner Res, 2008, 23: 447–452PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Liu X G, Tan L J, Lei S F, et al. Genome-wide association and replication studies identified TRHR as an important gene for lean body mass. Am J Hum Genet, 2009, 84: 418–423PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kaaks R, Lukanova A, Kurzer M S. Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Biomarkers Prev, 2002, 11: 1531–1543PubMedGoogle Scholar
  10. 10.
    Paganini-Hill A, Henderson V W. Estrogen deficiency and risk of Alzheimer’s disease in women. Am J Epidemiol, 1994, 140: 256–261PubMedGoogle Scholar
  11. 11.
    Silman A J. Risk factors for Colles’ fracture in men and women: results from the European Prospective Osteoporosis Study. Osteoporos Int, 2003, 14: 213–218PubMedGoogle Scholar
  12. 12.
    Roy D K, O’Neill T W, Finn J D, et al. Determinants of incident vertebral fracture in men and women: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int, 2003, 14: 19–26PubMedCrossRefGoogle Scholar
  13. 13.
    Yang T L, Chen X D, Guo Y, et al. Genome-wide copy-number-variation study identified a susceptibility gene, UGT2B17, for osteoporosis. Am J Hum Genet, 2008, 83: 663–674PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Treloar S A, Martin N G. Age at menarche as a fitness trait: nonadditive genetic variance detected in a large twin sample. Am J Hum Genet, 1990, 47: 137–148PubMedPubMedCentralGoogle Scholar
  15. 15.
    van den Berg S M, Boomsma D I. The familial clustering of age at menarche in extended twin families. Behav Genet, 2007, 37: 661–667PubMedCrossRefGoogle Scholar
  16. 16.
    Anderson C A, Duffy D L, Martin N G, et al. Estimation of variance components for age at menarche in twin families. Behav Genet, 2007, 37: 668–677PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson C A, Zhu G, Falchi M, et al. A genome-wide linkage scan for age at menarche in three populations of European descent. J Clin Endocrinol Metab, 2008, 93: 3965–3970PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kaprio J, Rimpela A, Winter T, et al. Common genetic influences on BMI and age at menarche. Hum Biol, 1995, 67: 739–753PubMedGoogle Scholar
  19. 19.
    Long J R, Xu H, Zhao L J, et al. The oestrogen receptor alpha gene is linked and/or associated with age of menarche in different ethnic groups. J Med Genet, 2005, 42: 796–800PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Stavrou I, Zois C, Chatzikyriakidou A, et al. Combined estrogen receptor alpha and estrogen receptor beta genotypes influence the age of menarche. Hum Reprod, 2006, 21: 554–557PubMedCrossRefGoogle Scholar
  21. 21.
    Stavrou I, Zois C, Ioannidis J P, et al. Association of polymorphisms of the oestrogen receptor alpha gene with the age of menarche. Hum Reprod, 2002, 17: 1101–1105PubMedCrossRefGoogle Scholar
  22. 22.
    Xita N, Tsatsoulis A, Stavrou I, et al. Association of SHBG gene polymorphism with menarche. Mol Hum Reprod, 2005, 11: 459–462PubMedCrossRefGoogle Scholar
  23. 23.
    Zhao J, Xiong D H, Guo Y, et al. Polymorphism in the insulin-like growth factor 1 gene is associated with age at menarche in caucasian females. Hum Reprod, 2007, 22: 1789–1794PubMedCrossRefGoogle Scholar
  24. 24.
    Yang F, Xiong D H, Guo Y, et al. The chemokine (C-C-motif) receptor 3 (CCR3) gene is linked and associated with age at menarche in Caucasian females. Hum Genet, 2007, 121: 35–42PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Gorai I, Tanaka K, Inada M, et al. Estrogen-metabolizing gene polymorphisms, but not estrogen receptor-alpha gene polymorphisms, are associated with the onset of menarche in healthy postmenopausal Japanese women. J Clin Endocrinol Metab, 2003, 88: 799–803PubMedCrossRefGoogle Scholar
  26. 26.
    Guo Y, Xiong D H, Yang T L, et al. Polymorphisms of estrogen-biosynthesis genes CYP17 and CYP19 may influence age at menarche: a genetic association study in Caucasian females. Hum Mol Genet, 2006, 15: 2401–2408PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lai J, Vesprini D, Chu W, et al. CYP gene polymorphisms and early menarche. Mol Genet Metab, 2001, 74: 449–457PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang L, Bonham A J, Li J, et al. Family-based bivariate association tests for quantitative traits. PLoS ONE, 2009, 4: e8133PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Zhang L, Pei Y F, Li J, et al. Univariate/multivariate genome-wide association scans using data from families and unrelated samples. PLoS ONE, 2009, 4: e6502PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Price A L, Patterson N J, Plenge R M, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006, 38: 904–909PubMedCrossRefGoogle Scholar
  31. 31.
    Lange C, Silverman E K, Xu X, et al. A multivariate family-based association test using generalized estimating equations: FBAT-GEE. Biostatistics, 2003, 4: 195–206PubMedCrossRefGoogle Scholar
  32. 32.
    Liu J, Pei Y, Papasian C J, et al. Bivariate association analyses for the mixture of continuous and binary traits with the use of extended generalized estimating equations. Genet Epidemiol, 2009, 33: 217–227PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Pei Y F, Zhang L, Liu J, et al. Multivariate association test using haplotype trend regression. Ann Hum Genet, 2009, 73: 456–464PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Liu Y Z, Pei Y F, Liu J F, et al. Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. PLoS ONE, 2009, 4: e6827PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cutbush M, Mollison P L, Parkin D M. A new human blood group. Nature, 1950, 165: 188–189CrossRefGoogle Scholar
  36. 36.
    Miller L H, Mason S J, Dvorak J A, et al. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood Group determinants. Science, 1975, 189: 561–563PubMedCrossRefGoogle Scholar
  37. 37.
    Shen H, Schuster R, Stringer K F, et al., The Duffy antigen/receptor for chemokines (DARC) regulates prostate tumor growth. FASEB J, 2006, 20: 59–64PubMedCrossRefGoogle Scholar
  38. 38.
    He W, Neil S, Kulkarni H, et al. Duffy antigen receptor for chemokines mediates trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS susceptibility. Cell Host Microbe, 2008, 4: 52–62PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Edderkaoui B, Baylink D J, Beamer W G, et al. Identification of mouse Duffy antigen receptor for chemokines (Darc) as a BMD QTL gene. Genome Res, 2007, 17: 577–585PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Durpes M C, Hardy-Dessources M D, El Nemer W, et al. Activation state of alpha4beta1 integrin on sickle red blood cells is linked to the duffy antigen receptor for chemokines (DARC) expression. J Biol Chem, 2011, 286: 3057–3064PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wang J, He Q, Shao Y G, et al. Duffy antigen receptor for chemokines expression is related with ER expression in primary lesion of breast cancer. Chin J Clinic Med, 2009, 16: 631–633Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Rong Hai
    • 1
    • 2
  • Lei Zhang
    • 1
    • 3
  • YuFang Pei
    • 1
    • 3
  • LanJuan Zhao
    • 3
  • Shu Ran
    • 1
  • YingYing Han
    • 1
  • XueZhen Zhu
    • 1
  • Hui Shen
    • 3
  • Qing Tian
    • 3
  • HongWen Deng
    • 1
    • 3
  1. 1.Center of System Biomedical SciencesUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.The Affiliated Hospital of Inner Mongolia Medical CollegeHuhhotChina
  3. 3.Department of BiostatisticsTulane UniversityNew OrleansUSA

Personalised recommendations