Skip to main content

Advertisement

SpringerLink
The role of virus-derived small interfering RNAs in RNA silencing in plants
Download PDF
Download PDF
  • Special Topic/Review
  • Open Access
  • Published: 15 March 2012

The role of virus-derived small interfering RNAs in RNA silencing in plants

  • Hui Zhu1 &
  • HuiShan Guo1 

Science China Life Sciences volume 55, pages 119–125 (2012)Cite this article

  • 2053 Accesses

  • 23 Citations

  • Metrics details

Abstract

Antiviral defense is one of the important roles of RNA silencing in plants. Virus-derived small interfering RNAs (vsiRNAs) are found in the infected host cells, indicating that the host RNA silencing machinery can target viral RNAs for destruction. With the development of high-throughput sequencing of vsiRNAs, recent genetic studies have shed light on the origin and composition of vsiRNAs and their potential functions in the regulation of gene expression. Here, we briefly describe the origin and biogenesis of vsiRNAs, and review the recent discoveries regarding vsiRNA-mediated RNA silencing of viral genomes and host transcripts. This will better our understanding of virus pathogenicity and RNA silencing-related host-pathogen interactions in plants.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Chen X. Small RNAs—secrets and surprises of the genome. Plant J, 2010, 61: 941–958

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Ghildiyal M, Zamore P D. Small silencing RNAs: an expanding universe. Nat Rev Genet, 2009, 10: 94–108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Chapman E J, Carrington J C. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet, 2007, 8: 884–896

    Article  PubMed  CAS  Google Scholar 

  4. Hamilton A J, Baulcombe D C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, 286: 950–952

    Article  PubMed  CAS  Google Scholar 

  5. Burgyan J. Role of silencing suppressor proteins. Methods Mol Biol, 2008, 451: 69–79

    Article  PubMed  CAS  Google Scholar 

  6. Ding S W, Voinnet O. Antiviral immunity directed by small RNAs. Cell, 2007, 130: 413–426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Voinnet O, Pinto Y M, Baulcombe D C. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA, 1999, 96: 14147–14152

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Szittya G, Moxon S, Pantaleo V, et al. Structural and functional analysis of viral siRNAs. PLoS Pathog, 2010, 6: e1000838

    Article  PubMed  PubMed Central  Google Scholar 

  9. Qu F. Antiviral role of plant-encoded RNA-dependent RNA polymerases revisited with deep sequencing of small interfering RNAs of virus origin. Mol Plant Microbe Interact, 2010, 23: 1248–1252

    Article  PubMed  CAS  Google Scholar 

  10. Donaire L, Wang Y, Gonzalez-Ibeas D, et al. Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology, 2009, 392: 203–214

    Article  PubMed  CAS  Google Scholar 

  11. Donaire L, Barajas D, Martinez-Garcia B, et al. Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J Virol, 2008, 82: 5167–5177

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Pantaleo V, Szittya G, Burgyan J. Molecular Bases of Viral RNA Targeting by Viral Small Interfering RNA-Programmed RISC. J Virol, 2007, 81: 3797–3806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Molnar A, Csorba T, Lakatos L, et al. Plant Virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol, 2005, 79: 7812–7818

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Wang X B, Wu Q, Ito T, et al. RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2010, 107: 484–489

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Garcia-Ruiz H, Takeda A, Chapman E J, et al. Arabidopsis RNA-dependent RNA polymerases and Dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell, 2010, 22: 481–496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Qi X, Bao F S, Xie Z. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS ONE, 2009, 4: e4971

    Article  PubMed  PubMed Central  Google Scholar 

  17. Azevedo J, Garcia D, Pontier D, et al. Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev, 2010, 24: 904–915

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zhang X, Yuan Y R, Pei Y, et al. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev, 2006, 20: 3255–3268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Pantaleo V, Burgyan J. Cymbidium ringspot virus harnesses RNA silencing to control the accumulation of virus parasite satellite RNA. J Virol, 2008, 82: 11851–11858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Golem S, Culver J N. Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol Plant Microbe Interact, 2003, 16: 681–688

    Article  PubMed  CAS  Google Scholar 

  21. Whitham S A, Yang C, Goodin M M. Global impact: elucidating plant responses to viral infection. Mol Plant Microbe Interact, 2006, 19: 1207–1215

    Article  PubMed  CAS  Google Scholar 

  22. Agudelo-Romero P, Carbonell P, de la Iglesia F, et al. Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virol J, 2008, 5: 92

    Article  PubMed  PubMed Central  Google Scholar 

  23. Havelda Z, Varallyay E, Valoczi A, et al. Plant virus infection-induced persistent host gene downregulation in systemically infected leaves. Plant J, 2008, 55: 278–288

    Article  PubMed  CAS  Google Scholar 

  24. Ahlquist P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science, 2002, 296: 1270–1273

    Article  PubMed  CAS  Google Scholar 

  25. den Boon J A, Ahlquist P. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu Rev Microbiol, 2010, 64: 241–256

    Article  Google Scholar 

  26. Moissiard G, Voinnet O. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci USA, 2006, 103: 19593–19598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Vanitharani R, Chellappan P, Fauquet C M. Geminiviruses and RNA silencing. Trends Plant Sci, 2005, 10: 144–151

    Article  PubMed  CAS  Google Scholar 

  28. Chellappan P, Vanitharani R, Fauquet C M. Short Interfering RNA accumulation correlates with host recovery in DNA virus-Infected hosts, and gene silencing targets specific viral sequences. J Virol, 2004, 78: 7465–7477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Fusaro A F, Matthew L, Smith N A, et al. RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep, 2006, 7: 1168–1175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Bouche N, Lauressergues D, Gasciolli V, et al. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J, 2006, 25: 3347–3356

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Deleris A, Gallego-Bartolome J, Bao J, et al. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science, 2006, 313: 68–71

    Article  PubMed  CAS  Google Scholar 

  32. Blevins T, Rajeswaran R, Shivaprasad P V, et al. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res, 2006, 34: 6233–6246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Yoshikawa M, Peragine A, Park M Y, et al. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev, 2005, 19: 2164–2175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Vazquez F, Vaucheret H, Rajagopalan R, et al. Endogenous transacting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 2004, 16: 69–79

    Article  PubMed  CAS  Google Scholar 

  35. Peragine A, Yoshikawa M, Wu G, et al. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of transacting siRNAs in Arabidopsis. Genes Dev, 2004, 18: 2368–2379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Baulcombe D. RNA silencing in plants. Nature, 2004, 431: 356–363

    Article  PubMed  CAS  Google Scholar 

  37. Harvey J J W, Lewsey M G, Patel K, et al. An antiviral defense role of AGO2 in plants. PLoS ONE, 2011, 6: e14639

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Takeda A, Iwasaki S, Watanabe T, et al. The mechanism selecting the guide strand from small RNA duplexes is different among Argonaute proteins. Plant Cell Physiol, 2008, 49: 493–500

    Article  PubMed  CAS  Google Scholar 

  39. Qu F, Ye X, Morris T J. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci USA, 2008, 105: 14732–14737

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Wang X B, Jovel J, Udomporn P, et al. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative Argonautes in Arabidopsis thaliana. Plant Cell, 2011, 23: 1625–1638

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Montgomery T A, Howell M D, Cuperus J T, et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell, 2008, 133: 128–141

    Article  PubMed  CAS  Google Scholar 

  42. Mi S, Cai T, Hu Y, et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell, 2008, 133: 116–127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Simon-Mateo C, Garcia J A. MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol, 2006, 80: 2429–2436

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Li H, Li W X, Ding S W. Induction and suppression of RNA silencing by an animal virus. Science, 2002, 296: 1319–1321

    Article  PubMed  CAS  Google Scholar 

  45. Diaz-Pendon J A, Li F, Li W X, et al. Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 2007, 19: 2053–2063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Martin-Hernandez A M, Baulcombe D C. Tobacco rattle virus 16-kilodalton protein encodes a suppressor of RNA silencing that allows transient viral entry in meristems. J Virol, 2008, 82: 4064–4071

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Du Q S, Duan C G, Zhang Z H, et al. DCL4 targets Cucumber mosaic virus satellite RNA at novel secondary structures. J Virol, 2007, 81: 9142–9151

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Zhu H, Duan C G, Hou W N, et al. Satellite RNA-derived satsiR-12 targeting the 3’UTR of Cucumber mosaic virus triggers viral RNAs for degradation. J Virol, 2011, 85: 13384–13397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Hou W N, Duan C G, Fang R X, et al. Satellite RNA reduces expression of the 2b suppressor protein resulting in the attenuation of symptoms caused by Cucumber mosaic virus infection. Mol Plant Pathol, 2011, 12: 595–605

    Article  PubMed  CAS  Google Scholar 

  50. Alvarado V, Scholthof H B. Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin Cell Dev Biol, 2009, 20: 1032–1040

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Díaz-Pendón J A, Ding S W. Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol, 2008, 46: 303–326

    Article  PubMed  Google Scholar 

  52. Dunoyer P, Voinnet O. The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol, 2005, 8: 415–423

    Article  PubMed  CAS  Google Scholar 

  53. Wang M B. On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc Natl Acad Sci USA, 2004, 101: 3275–3280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Devic M, Jaegle M, Baulcombe D. Symptom production on tobacco and tomato is determined by two distinct domains of the satellite RNA of cucumber mosaic virus (strain Y). J Gen Virol, 1989, 70: 2765–2774

    Article  PubMed  CAS  Google Scholar 

  55. Masuta C, Takanami Y. Determination of sequence and structural requirements for pathogenicity of a cucumber mosaic virus satellite RNA (Y-satRNA). Plant Cell, 1989, 1: 1165–1173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Jaegle M, Devic M, Longstaff M, et al. Cucumber mosaic virus satellite RNA (Y strain): analysis of sequences which affect yellow mosaic symptoms on tobacco. J Gen Virol, 1990, 71: 1905–1912

    Article  PubMed  CAS  Google Scholar 

  57. Kuwata S, Masuta C, Takanami Y. Reciprocal phenotype alterations between two satellite RNAs of cucumber mosaic virus. J Gen Virol, 1991, 72: 2385–2389

    Article  PubMed  CAS  Google Scholar 

  58. Smith N A, Eamens A L, Wang M B. Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog, 2011, 7: e1002022

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Li W X, Ding S W. Viral suppressors of RNA silencing. Curr Opin Biotechnol, 2001, 12: 150–154

    Article  PubMed  CAS  Google Scholar 

  60. Moissiard G, Voinnet O. Viral suppression of RNA silencing in plants. Mol Plant Pathol, 2004, 5: 71–82

    Article  PubMed  CAS  Google Scholar 

  61. Roth B M, Pruss G J, Vance V B. Plant viral suppressors of RNA silencing. Virus Res, 2004, 102: 97–108

    Article  PubMed  CAS  Google Scholar 

  62. Shimura H, Pantaleo V, Ishihara T, et al. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog, 2011, 7: e1002021

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Manfre A. Importance of coat protein and RNA silencing in satellite RNA/virus interactions. Virology, 2008, 379: 161–167

    Article  PubMed  CAS  Google Scholar 

  64. Zhang F, Simon A E. Enhanced viral pathogenesis associated with a virulent mutant virus or a virulent satellite RNA correlates with reduced virion accumulation and abundance of free coat protein. Virology, 2003, 312: 8–13

    Article  PubMed  CAS  Google Scholar 

  65. Raja P, Sanville B C, Buchmann R C, et al. Viral genome methylation as an epigenetic defense against geminiviruses. J Virol, 2008, 82: 8997–9007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Yang X, Xie Y, Raja P, et al. Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog, 2011, 7: e1002329

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Blevins T, Rajeswaran R, Aregger M, et al. Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res, 2011, 39: 5003–5014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China

    Hui Zhu & HuiShan Guo

Authors
  1. Hui Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. HuiShan Guo
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to HuiShan Guo.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Zhu, H., Guo, H. The role of virus-derived small interfering RNAs in RNA silencing in plants. Sci. China Life Sci. 55, 119–125 (2012). https://doi.org/10.1007/s11427-012-4281-3

Download citation

  • Received: 30 November 2011

  • Accepted: 28 December 2011

  • Published: 15 March 2012

  • Issue Date: February 2012

  • DOI: https://doi.org/10.1007/s11427-012-4281-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • vsiRNA
  • RNA silencing
  • virus pathogenicity
  • gene regulation
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.