Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Science China Life Sciences
  3. Article

Promotion of spinosad biosynthesis by chromosomal integration of the Vitreoscilla hemoglobin gene in Saccharopolyspora spinosa

  • Research Paper
  • Open access
  • Published: 15 March 2012
  • Volume 55, pages 172–180, (2012)
  • Cite this article
Download PDF

You have full access to this open access article

Science China Life Sciences Aims and scope Submit manuscript
Promotion of spinosad biosynthesis by chromosomal integration of the Vitreoscilla hemoglobin gene in Saccharopolyspora spinosa
Download PDF
  • YuShuang Luo1,
  • XiaoXiao Kou1,
  • XueZhi Ding1,
  • ShengBiao Hu1,
  • Ying Tang1,
  • WenPing Li1,
  • Fan Huang1,
  • Qi Yang1,
  • HanNa Chen1 &
  • …
  • LiQiu Xia1 
  • 1702 Accesses

  • 16 Citations

  • 3 Altmetric

  • Explore all metrics

Abstract

To promote spinosad biosynthesis by improving the limited oxygen supply during high-density fermentation of Saccharopolyspora spinosa, the open reading frame of the Vitreoscilla hemoglobin gene was placed under the control of the promoter for the erythromycin resistance gene by splicing using overlapping extension PCR. This was cloned into the integrating vector pSET152, yielding the Vitreoscilla hemoglobin gene expression plasmid pSET152EVHB. This was then introduced into S. spinosa SP06081 by conjugal transfer, and integrated into the chromosome by site-specific recombination at the integration site ΦC31 on pSET152EVHB. The resultant conjugant, S. spinosa S078-1101, was genetically stable. The integration was further confirmed by PCR and Southern blotting analysis. A carbon monoxide differential spectrum assay showed that active Vitreoscilla hemoglobin was successfully expressed in S. spinosa S078-1101. Fermentation results revealed that expression of the Vitreoscilla hemoglobin gene significantly promoted spinosad biosynthesis under normal oxygen and moderately oxygen-limiting conditions (P<0.01). These findings demonstrate that integrating expression of the Vitreoscilla hemoglobin gene improves oxygen uptake and is an effective means for the genetic improvement of S. spinosa fermentation.

Article PDF

Download to read the full article text

Similar content being viewed by others

Industrial biotechnology of Pseudomonas putida: advances and prospects

Article Open access 13 August 2020

Anna Weimer, Michael Kohlstedt, … Christoph Wittmann

Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production

Article Open access 19 January 2024

Ping Lu, Ruoxuan Bai, … Hongxin Zhao

The synergistic effect of metal ions and amino acids on the fermentation of β-CGTase-producing statin DF257

Article 23 January 2024

Hua Wang, Wenxi Zhou, … Yunxiao Ma

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Toshi M, Mande S, Dikshit K. Hemoglobin biosynthesis in Vitreoscilla stercoraria DW: cloning, expression, and characterization of a new homolog of a bacterial globin gene. Appl Environ Microbiol, 1998, 64: 2220–2228

    Google Scholar 

  2. Orii Y, Webster D A. Photodissociation of oxygenated cytochrome o(s) (Vitreoscilla) and kinetic studies of reassociation. J Biol Chem, 1986, 261: 3544–3547

    PubMed  CAS  Google Scholar 

  3. Ramandeep H K W, Raje M, Kim K J, et al. Vitreoscilla hemoglobin. Intracellular localization and binding to membranes. J Biol Chem, 2001, 276: 24781–24789

    Article  PubMed  CAS  Google Scholar 

  4. Kim K J, Chi P Y, Hwang K W, et al. Study of cytochrome bo function in Vitreoscilla using a cyo-knockout mutant. J Bio Chem, 2000, 128: 49–55

    CAS  Google Scholar 

  5. Kvist M, Ryabova E S, Nordlander E, et al. An investigation of the peroxidase activity of Vitreoscilla hemoglobin. J Biol Inorg Chem, 2007, 12: 324–334

    Article  PubMed  CAS  Google Scholar 

  6. Kim Y J, Sa S O, Chang Y K, et al. Overexpression of Shinorhizobium meliloti hemoprotein in Streptomyces lividans to enhance secondary metabolite production. J Microbiol Biotechnol, 2007, 17: 2066–2070

    PubMed  CAS  Google Scholar 

  7. Anand A, Duk B, Singh S, et al. Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. Biochem J, 2010, 426: 271–280

    Article  PubMed  CAS  Google Scholar 

  8. Hofmann G, Diano A, Nielsen J. Recombinant bacterial hemoglobin alters metabolism of Aspergillus niger. Metab Eng, 2009, 11: 8–12

    Article  PubMed  CAS  Google Scholar 

  9. Isarankura-Na-Ayudhya C, Panpumthong P, Tangkosakul T, et al. Shedding light on the role of Vitreoscilla hemoglobin on cellular catabolic regulation by proteomic analysis. Int J Biol Sci, 2008, 4: 71–80

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wen Y, Song Y, Li J L. The effects of Vitreoscilla hemoglobin expression on growth and antibiotic production in Streptomyces cinnamonensis. Chin J Biotech, 2001, 17: 24–28

    CAS  Google Scholar 

  11. Zhang L, Li Y, Wang Z, et al. Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol Adv, 2007, 25: 123–136

    Article  PubMed  CAS  Google Scholar 

  12. Li M, Wu J, Lin J, et al. Expression of Vitreoscilla hemoglobin enhances cell growth and dihydroxyacetone production in Gluconobacter oxydans. Curr Microbiol, 2010, 61: 370–375

    Article  PubMed  CAS  Google Scholar 

  13. Kurt A G, Aytan E, Ozer U, et al. Production of L-DOPA and dopamine in recombinant bacteria bearing the Vitreoscilla hemoglobin gene. Biotechnol J, 2009, 4: 1077–1088

    Article  PubMed  CAS  Google Scholar 

  14. Chen H, Chu J, Zhang S, et al. Intracellular expression of Vitreoscilla hemoglobin improves S-adenosylmethionine production in a recombinant Pichia pastoris. Appl Microbiol Biotechnol, 2007, 74: 1205–1212

    Article  PubMed  CAS  Google Scholar 

  15. Chien L J, Lee C K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol Prog, 2007, 23: 1017–1022

    PubMed  CAS  Google Scholar 

  16. Xiong X C, Xing J M, Li X, et al. Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin. Appl Environ Microbiol, 2007, 73: 2394–2397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Yu H M, Ma X F, Luo H, et al. Fusion expression of D-amino acid oxidase from Trignoposis variabilis with maltose binding protein and Vitreoscilla hemoglobin. Chin J Biotech, 2008, 24: 1004–1009

    Article  CAS  Google Scholar 

  18. Suthar D H, Chattoo B B. Expression of Vitreoscilla hemoglobin enhances growth and levels of α-amylase in Schwanniomyces occidentalis. Appl Microbiol Biotechnol, 2006, 72: 94–102

    Article  PubMed  CAS  Google Scholar 

  19. Yang H T, Liu R H, He J Y, et al. Cloning of Vitreoscilla hemoglobin gene and its expression in Streptomyces lincolnensis. J Shenyang Pharm Univ, 2009, 26: 657–662

    Google Scholar 

  20. Feng L, Chen S W, Sun M, et al. Expression of Vitreoscilla hemoglobin in Bacillus thuringiensis improves the cell density and insecticidal crystal proteins yield. Appl Microbiol Biotechnol, 2007, 74: 390–397

    Article  CAS  Google Scholar 

  21. Su Y S, Li X, Liu Q Z, et al. Improved poly-Γ-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Bioresource Technol, 2010, 101: 4733–4736

    Article  CAS  Google Scholar 

  22. Horng Y T, Chang K C, Chien C C, et al. Enhanced polyhydroxybutyrate (PHB) production via the coexpressed phaCAB and vgb genes controlled by arabinose PBAD promoter in Escherichia coli. Lett Appl Microbiol, 2010, 50: 158–167

    Article  PubMed  CAS  Google Scholar 

  23. Mertz F P, Yao R C. Actinomadura fibrosa sp. nov. isolated from soil. Int J Syst Bacteriol, 1990, 40: 28–33

    Article  PubMed  CAS  Google Scholar 

  24. Millar N S, Denholm I. Nicotinic acetylcholine receptors: targets for commercially important insecticides. Invert Neurosci, 2007, 7: 53–66

    Article  PubMed  CAS  Google Scholar 

  25. Cleveland C B, Bormett G A, Saunders D G, et al. Environmental fate of spinosad. 1. Dissipation and degradation in aqueous systems. J Agric Food Chem, 2002, 50: 3244–3256

    Article  PubMed  CAS  Google Scholar 

  26. Mota-Sanchez D, Hollingworth R M, Grafius E J, et al. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say)(Coleoptera: Chrysomelidae). Pest Manag Sci, 2006, 62: 30–37

    Article  PubMed  CAS  Google Scholar 

  27. Jin Z, Wu J, Zhang Y, et al. Improvement of spinosad producing Saccharopolyspora spinosa by rational screening. J Zhejiang Univ SCIENCE A, 2006, 7: 366–370

    Article  Google Scholar 

  28. Luo Y S, Ding X Z, Xia L Q, et al. Conditions for protoplast preparation of spinosyn-producing strain and the physiological properties of protoplast-regenerated strains. Chin J Biotech, 2009, 25: 360–367

    CAS  Google Scholar 

  29. Wang C, Zhang X, Chen Z, et al. Strain construction for enhanced production of spinosad via intergeneric protoplast fusion. Can J Microbiol, 2009, 55: 1070–1075

    Article  PubMed  CAS  Google Scholar 

  30. Tang Y, Xia L, Ding X, et al. Molecular cloning and overexpression of partial spinosyn biosynthetic gene cluster in Saccharopolyspora spinosa enhances spinosad production. FEMS Microbiol Lett, 2011, 325: 22–29

    Article  PubMed  CAS  Google Scholar 

  31. Sambrook J, Fritsch E F, Maniatis T (author), et al. Molecular Cloning: A Laboratory Manual. 2nd ed. Beijing: Science Press, 1992. 43–370

    Google Scholar 

  32. Matsushima P, Broughton M C, Turner J R, et al. Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa: effects of chromosomal insertions on macrolide A83543 production. Gene, 1994, 146: 39–45

    Article  PubMed  CAS  Google Scholar 

  33. Kieser T, Bibb M J, Buttner M J, et al. Practical Streptomyces Genetics. Norwich: The John Innes Foundation, Colney, 2000. 161–211

    Google Scholar 

  34. Bierman M, Logan R, O’Brien K, et al. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene, 1992, 116: 43–49

    Article  PubMed  CAS  Google Scholar 

  35. Feng L. Effects of the expression of Vitreoscilla hemoglobin gene in Bacillus thuringiensis on its fermentative characters. Dissertation for Doctoral Degree. Wuhan: Huazhong Agriculture University, 2006

    Google Scholar 

  36. Yuan H S, Li S N, Zhu B C, et al. Studies on mycelia content measuring of Penicillium chrysogenum in fermentation. J Agricult Univ Hebei, 2007, 30: 83–86

    CAS  Google Scholar 

  37. Luo Y, Ding X, Xia L, et al. Comparative proteomic analysis of Saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield. Proteome Sci, 2011, 9: 40

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Nikodinovic J, Priestley N D. A second generation snp-derived Escherichia coli-Streptomyces shuttle expression vector that is generally transferable by conjugation. Plasmid, 2006, 56: 223–227

    Article  PubMed  CAS  Google Scholar 

  39. Brünker P, Minas W, Kallio P T, et al. Genetic engineering of an industrial strain of Saccharopolyspora erythraea for stable expression of the Vitreoscilla haemoglobin gene (vhb). Microbiology, 1998, 144: 2441–2448

    Article  PubMed  Google Scholar 

  40. Yang J, Webster D A, Stark B C. ArcA works with Fnr as a positive regulator of Vitreoscilla (bacterial) hemoglobin gene expression in Escherichia coli. Microbiol Res, 2005, 160: 405–415

    Article  PubMed  CAS  Google Scholar 

  41. Tsai P S, Kallio P T, Bailey J E. Fnr, a global transcriptional regulator of Escherichia coli, activates the Vitreoscilla hemoglobin (VHb) promoter and intracellular VHb expression increases cytochrome d promoter activity. Biotechnol Prog, 1995, 11: 288–293

    Article  PubMed  CAS  Google Scholar 

  42. Priscila G, Fernández F J, Absalón A E, et al. Expression of the bacterial hemoglobin gene from Vitreoscilla stercoraria increases rifamycin B production in Amycolatopsis mediterranei. J Biosic Bioeng, 2008, 106: 493–497

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China

    YuShuang Luo, XiaoXiao Kou, XueZhi Ding, ShengBiao Hu, Ying Tang, WenPing Li, Fan Huang, Qi Yang, HanNa Chen & LiQiu Xia

Authors
  1. YuShuang Luo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. XiaoXiao Kou
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. XueZhi Ding
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. ShengBiao Hu
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Ying Tang
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. WenPing Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Fan Huang
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Qi Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. HanNa Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. LiQiu Xia
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to LiQiu Xia.

Additional information

Contributed equally to this work

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Luo, Y., Kou, X., Ding, X. et al. Promotion of spinosad biosynthesis by chromosomal integration of the Vitreoscilla hemoglobin gene in Saccharopolyspora spinosa. Sci. China Life Sci. 55, 172–180 (2012). https://doi.org/10.1007/s11427-012-4276-0

Download citation

  • Received: 18 November 2011

  • Accepted: 05 December 2011

  • Published: 15 March 2012

  • Issue Date: February 2012

  • DOI: https://doi.org/10.1007/s11427-012-4276-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Saccharopolyspora spinosa
  • spinosad
  • Vitreoscilla hemoglobin
  • integrating vector
  • homologous recombination
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature