Skip to main content

Advertisement

SpringerLink
  • Science China Life Sciences
  • Journal Aims and Scope
  • Submit to this journal
Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Role of Ca2+ in healthy and pathologic cardiac function: from normal excitation–contraction coupling to mutations that cause inherited arrhythmia

10 October 2022

Joshua A. Keefe, Oliver M. Moore, … Xander H. T. Wehrens

Mechanisms underlying pathological Ca2+ handling in diseases of the heart

05 January 2021

Satadru K. Lahiri, Yuriana Aguilar-Sanchez & Xander H. T. Wehrens

Epac Proteins and Their Role in the Physiological and Pathological Processes in the Cardiovascular System. Part 1: The Role of Epac Proteins in the Physiological and Pathological Processes of the Vasculature

01 March 2020

S. A. Kryzhanovsky, T. D. Nikiforova & A. D. Durnev

Role of store-operated Ca2+ entry in cardiovascular disease

18 March 2022

Ting Lu, Yihua Zhang, … Qiang Xu

The role of calcium homeostasis remodeling in inherited cardiac arrhythmia syndromes

06 January 2021

Shanna Hamilton, Roland Veress, … Dmitry Terentyev

Cardiac small-conductance calcium-activated potassium channels in health and disease

23 February 2021

Xiao-Dong Zhang, Phung N. Thai, … Nipavan Chiamvimonvat

The function and regulation of calsequestrin-2: implications in calcium-mediated arrhythmias

07 January 2022

Elliot T. Sibbles, Helen M. M. Waddell, … Michelle L. Munro

Calcium- and voltage-gated BK channels in vascular smooth muscle

11 May 2018

Alex M. Dopico, Anna N. Bukiya & Jonathan H. Jaggar

EPAC Proteins and Their Role in the Physiological and Pathological Processes in the Cardiovascular System. Part II. The role of EPAC Proteins in the Physiology and Pathology of the Heart

01 July 2020

S. A. Kryzhanovskii, T. D. Nikiforova, … A. D. Durnev

Download PDF
  • Reviews
  • Open Access
  • Published: 24 July 2011

Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps

  • Elizabeth J. Cartwright1,
  • Delvac Oceandy1,
  • Clare Austin1 &
  • …
  • Ludwig Neyses1 

Science China Life Sciences volume 54, pages 691–698 (2011)Cite this article

  • 1843 Accesses

  • 35 Citations

  • Metrics details

Abstract

The plasma membrane calcium ATPases (PMCA) are a family of genes which extrude Ca2+ from the cell and are involved in the maintenance of intracellular free calcium levels and/or with Ca2+ signalling, depending on the cell type. In the cardiovascular system, Ca2+ is not only essential for contraction and relaxation but also has a vital role as a second messenger in signal transduction pathways. A complex array of mechanisms regulate intracellular free calcium levels in the heart and vasculature and a failure in these systems to maintain normal Ca2+ homeostasis has been linked to both heart failure and hypertension. This article focuses on the functions of PMCA, in particular isoform 4 (PMCA4), in the heart and vasculature and the reported links between PMCAs and contractile function, cardiac hypertrophy, cardiac rhythm and sudden cardiac death, and blood pressure control and hypertension. It is becoming clear that this family of calcium extrusion pumps have essential roles in both cardiovascular health and disease.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Lloyd-Jones D M, Larson M G, Leip E P, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation, 2002, 106: 3068–3072, 12473553, 10.1161/01.CIR.0000039105.49749.6F

    Article  PubMed  Google Scholar 

  2. Bleumink G S, Knetsch A M, Sturkenboom M C, et al. Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure. The Rotterdam Study. Eur Heart J, 2004, 25: 1614–1619

    Article  PubMed  Google Scholar 

  3. Bers D M. Cardiac excitation-contraction coupling. Nature, 2002, 415: 198–205, 11805843, 10.1038/415198a, 1:CAS:528:DC%2BD38Xms1Whsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  4. Frank K F, Bolck B, Brixius K, et al. Modulation of SERCA: implications for the failing human heart. Basic Res Cardiol, 2002, 97: 172–178, 10.1007/s003950200033

    Google Scholar 

  5. Pieske B, Maier L S, Piacentino V, et al. Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation, 2002, 106: 447–453, 12135944, 10.1161/01.CIR.0000023042.50192.F4, 1:CAS:528:DC%2BD38XmsVagurw%3D

    Article  PubMed  CAS  Google Scholar 

  6. Toischer K, Lehnart S E, Tenderich G, et al. K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca(2+) leak from the sarcoplasmic reticulum. Basic Res Cardiol, 2010, 105: 279–287, 19718543, 10.1007/s00395-009-0057-8, 1:CAS:528:DC%2BC3cXnvFWktA%3D%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Qi M, Shannon T R, Euler D E, et al. Downregulation of sarcoplasmic reticulum Ca(2+)-ATPase during progression of left ventricular hypertrophy. Am J Physiol, 1997, 272: H2416–2424, 9176313, 1:CAS:528:DyaK2sXjsFWgtLc%3D

    PubMed  CAS  Google Scholar 

  8. Davia K, Davies C H, Harding S E. Effects of inhibition of sarcoplasmic reticulum calcium uptake on contraction in myocytes isolated from failing human ventricle. Cardiovasc Res, 1997, 33: 88–97, 9059532, 10.1016/S0008-6363(96)00187-3, 1:CAS:528:DyaK2sXovV2nsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  9. Borlak J, Thum T. Hallmarks of ion channel gene expression in end-stage heart failure. FASEB J, 2003, 17: 1592–1608, 12958166, 10.1096/fj.02-0889com, 1:CAS:528:DC%2BD3sXntlSrs7o%3D

    Article  PubMed  CAS  Google Scholar 

  10. Marx S O, Marks A R. Regulation of the ryanodine receptor in heart failure. Basic Res Cardiol, 2002, 97: I49–151, 12479234, 10.1007/s003950200029

    PubMed  Google Scholar 

  11. Terracciano C. Functional consequences of Na/Ca exchanger overexpression in cardiac myocytes. Ann N Y Acad Sci, 2002, 976: 520–527, 12502606, 10.1111/j.1749-6632.2002.tb04786.x, 1:CAS:528:DC%2BD3sXht1yhtbw%3D

    Article  PubMed  CAS  Google Scholar 

  12. Carafoli E, James P, Strehler E E. Structure-function relationships in the calcium pump of plasma membranes. Prog Clin Biol Res, 1990, 332: 181–193, 2139512, 1:CAS:528:DyaK3cXlsVOlsrY%3D

    PubMed  CAS  Google Scholar 

  13. Cartwright E J, Schuh K, Neyses L. Calcium transport in cardiovascular health and disease—the sarcolemmal calcium pump enters the stage. J Mol Cell Cardiol, 2005, 39: 403–406, 15946676, 10.1016/j.yjmcc.2005.04.007, 1:CAS:528:DC%2BD2MXosVCrs7Y%3D

    Article  PubMed  CAS  Google Scholar 

  14. Olson S, Wang M G, Carafoli E, et al. Localization of two genes encoding plasma membrane Ca2(+)-transporting ATPases to human chromosomes 1q25-32 and 12q21-23. Genomics, 1991, 9: 629–641, 1674727, 10.1016/0888-7543(91)90356-J, 1:CAS:528:DyaK3MXkvVKntb0%3D

    Article  PubMed  CAS  Google Scholar 

  15. Wang M G, Yi H, Hilfiker H, et al. Localization of two genes encoding plasma membrane Ca2+ ATPases isoforms 2 (ATP2B2) and 3 (ATP2B3) to human chromosomes 3p26 p25 and Xq28, → respectively. Cytogenet Cell Genet, 1994, 67: 41–45, 8187550, 10.1159/000133794, 1:CAS:528:DyaK2MXjvVWltQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  16. Falchetto R, Vorherr T, Carafoli E. The calmodulin-binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci, 1992, 1: 1613–1621, 1339025, 10.1002/pro.5560011209, 1:CAS:528:DyaK3sXhs1CisLg%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Carafoli E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J, 1994, 8: 993–1002, 7926378, 1:CAS:528:DyaK2cXmvFGlsL0%3D

    PubMed  CAS  Google Scholar 

  18. Di Leva F, Domi T, Fedrizzi L, et al. The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys, 2008, 476: 65–74, 18328800, 10.1016/j.abb.2008.02.026

    Article  PubMed  Google Scholar 

  19. Strehler E E, Zacharias D A. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev, 2001, 81: 21–50, 11152753, 1:CAS:528:DC%2BD3MXitV2kt7Y%3D

    PubMed  CAS  Google Scholar 

  20. Zacharias D A, Kappen C. Developmental expression of the four plasma membrane calcium ATPase (PMCA) genes in the mouse. Biochim Biophys Acta, 1999, 1428: 397–405, 10434059, 1:CAS:528:DyaK1MXmtVWjsrw%3D

    Article  PubMed  CAS  Google Scholar 

  21. Okunade G W, Miller M L, Pyne G J, et al. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem, 2004, 279: 33742–33750, 15178683, 10.1074/jbc.M404628200, 1:CAS:528:DC%2BD2cXmtFOiu78%3D

    Article  PubMed  CAS  Google Scholar 

  22. Stauffer T P, Guerini D, Carafoli E. Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. J Biol Chem, 1995, 270: 12184–12190, 7538133, 10.1074/jbc.270.11.6056, 1:CAS:528:DyaK2MXlvVWktLY%3D

    Article  PubMed  CAS  Google Scholar 

  23. Dumont R A, Lins U, Filoteo A G, et al. Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci, 2001, 21: 5066–5078, 11438582, 1:CAS:528:DC%2BD3MXkvFSku7c%3D

    PubMed  CAS  Google Scholar 

  24. Ficarella R, Di Leva F, Bortolozzi M, et al. A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc Natl Acad Sci USA, 2007, 104: 1516–1521, 17234811, 10.1073/pnas.0609775104, 1:CAS:528:DC%2BD2sXhslaktLg%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Reinhardt T A, Filoteo A G, Penniston J T, et al. Ca(2+)-ATPase protein expression in mammary tissue. Am J Physiol Cell Physiol, 2000, 279: C1595–1602, 11029307, 1:CAS:528:DC%2BD3cXotFaru70%3D

    PubMed  CAS  Google Scholar 

  26. Stahl W L, Eakin T J, Owens J W, et al. Plasma membrane Ca(2+)-ATPase isoforms: distribution of mRNAs in rat brain by in situ hybridization. Brain Res Mol Brain Res, 1992, 16: 223–231, 1337931, 10.1016/0169-328X(92)90229-5, 1:CAS:528:DyaK3sXnslKntQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  27. Brown B J, Hilfiker H, DeMarco S J, et al. Primary structure of human plasma membrane Ca(2+)-ATPase isoform 3. Biochim Biophys Acta, 1996, 1283: 10–13, 8765088, 10.1016/0005-2736(96)00108-3

    Article  PubMed  Google Scholar 

  28. Greeb J, Shull G E. Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle. J Biol Chem, 1989, 264: 18569–18576, 2530223, 1:CAS:528:DyaK3cXhvFaqsro%3D

    PubMed  CAS  Google Scholar 

  29. Kamagate A, Herchuelz A, Bollen A, et al. Expression of multiple plasma membrane Ca(2+)-ATPases in rat pancreatic islet cells. Cell Calcium, 2000, 27: 231–246, 10858669, 10.1054/ceca.2000.0116, 1:CAS:528:DC%2BD3cXjsFeksLc%3D

    Article  PubMed  CAS  Google Scholar 

  30. Brandt P, Neve R L, Kammesheidt A, et al. Analysis of the tissue-specific distribution of mRNAs encoding the plasma membrane calcium-pumping ATPases and characterization of an alternately spliced form of PMCA4 at the cDNA and genomic levels. J Biol Chem, 1992, 267: 4376–4385, 1531651, 1:CAS:528:DyaK3sXhs1Gks7w%3D

    PubMed  CAS  Google Scholar 

  31. Howard A, Legon S, Walters J R. Human and rat intestinal plasma membrane calcium pump isoforms. Am J Physiol, 1993, 265: G917–925, 7694502, 1:STN:280:DyaK2c%2Fls12kug%3D%3D

    PubMed  CAS  Google Scholar 

  32. Jones S, Solomon A, Sanz-Rosa D, et al. The plasma membrane calcium ATPase (PMCA) modulates calcium homeostasis, intracellular signalling events and function in platelets. J Thromb Haemost, 2010, 8: 2766–2774, 20880258, 10.1111/j.1538-7836.2010.04076.x, 1:CAS:528:DC%2BC3MXhtFGgur4%3D

    Article  PubMed  CAS  Google Scholar 

  33. Oceandy D, Cartwright EJ, Emerson M, et al. Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b. Circulation, 2007, 115: 483–492, 17242280, 10.1161/CIRCULATIONAHA.106.643791, 1:CAS:528:DC%2BD2sXnvF2mtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  34. Pande J, Mallhi K K, Sawh A, et al. Aortic smooth muscle and endothelial plasma membrane Ca2+ pump isoforms are inhibited differently by the extracellular inhibitor caloxin 1b1. Am J Physiol Cell Physiol, 2006, 290: C1341–1349, 16452157, 10.1152/ajpcell.00573.2005, 1:CAS:528:DC%2BD28XkvFKmtLc%3D

    Article  PubMed  CAS  Google Scholar 

  35. Schuh K, Cartwright E J, Jankevics E, et al. Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem, 2004, 279: 28220–28226, 15078889, 10.1074/jbc.M312599200, 1:CAS:528:DC%2BD2cXlt1Cltbo%3D

    Article  PubMed  CAS  Google Scholar 

  36. Schultz J M, Yang Y, Caride A J, et al. Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N Engl J Med, 2005, 352: 1557–1564, 15829536, 10.1056/NEJMoa043899, 1:CAS:528:DC%2BD2MXjtFGntrc%3D

    Article  PubMed  CAS  Google Scholar 

  37. VanHouten J, Sullivan C, Bazinet C, et al. PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer. Proc Natl Acad Sci USA, 2010, 107: 11405–11410, 20534448, 10.1073/pnas.0911186107, 1:CAS:528:DC%2BC3cXot1ahu78%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Ueda K, Valdivia C, Medeiros-Domingo A, et al. Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc Natl Acad Sci USA, 2008, 105: 9355–9360, 18591664, 10.1073/pnas.0801294105, 1:CAS:528:DC%2BD1cXosFars78%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Arking D E, Pfeufer A, Post W, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet, 2006, 38: 644–651, 16648850, 10.1038/ng1790, 1:CAS:528:DC%2BD28XltVOhtbs%3D

    Article  PubMed  CAS  Google Scholar 

  40. Cho Y S, Go M J, Kim Y J, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet, 2009, 41: 527–534, 19396169, 10.1038/ng.357, 1:CAS:528:DC%2BD1MXltValt7k%3D

    Article  PubMed  CAS  Google Scholar 

  41. Levy D, Ehret G B, Rice K, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet, 2009, 41: 677–687, 19430479, 10.1038/ng.384, 1:CAS:528:DC%2BD1MXls1Cmurk%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Tabara Y, Kohara K, Kita Y, et al. Common variants in the ATP2B1 gene are associated with susceptibility to hypertension: the Japanese Millennium Genome Project. Hypertension, 2010, 56: 973–980, 20921432, 10.1161/HYPERTENSIONAHA.110.153429, 1:CAS:528:DC%2BC3cXhtlSqu7%2FK

    Article  PubMed  CAS  Google Scholar 

  43. Takeuchi F, Isono M, Katsuya T, et al. Blood pressure and hypertension are associated with 7 loci in the Japanese population. Circulation, 2010, 121: 2302–2309, 20479155, 10.1161/CIRCULATIONAHA.109.904664

    Article  PubMed  Google Scholar 

  44. Kozel P J, Friedman R A, Erway L C, et al. Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J Biol Chem, 1998, 273: 18693–18696, 9668038, 10.1074/jbc.273.30.18693, 1:CAS:528:DyaK1cXltFGrs7w%3D

    Article  PubMed  CAS  Google Scholar 

  45. Street V A, McKee-Johnson J W, Fonseca R C, et al. Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet, 1998, 19: 390–394, 9697703, 10.1038/1284, 1:CAS:528:DyaK1cXlt1CisrY%3D

    Article  PubMed  CAS  Google Scholar 

  46. Takahashi K, Kitamura K. A point mutation in a plasma membrane Ca(2+)-ATPase gene causes deafness in Wriggle Mouse Sagami. Biochem Biophys Res Commun, 1999, 261: 773–778, 10441500, 10.1006/bbrc.1999.1102, 1:CAS:528:DyaK1MXltVagsLk%3D

    Article  PubMed  CAS  Google Scholar 

  47. Mohamed T M, Oceandy D, Prehar S, et al. Specific role of neuronal nitric-oxide synthase when tethered to the plasma membrane calcium pump in regulating the beta-adrenergic signal in the myocardium. J Biol Chem, 2009, 284: 12091–12098, 19278978, 10.1074/jbc.M809112200, 1:CAS:528:DC%2BD1MXltVCmtbc%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Wu X, Chang B, Blair N S, et al. Plasma membrane Ca2+-ATPase isoform 4 antagonizes cardiac hypertrophy in association with calcineurin inhibition in rodents. J Clin Invest, 2009, 119: 976–985, 19287093, 1:CAS:528:DC%2BD1MXktlSntL4%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Bendall J K, Damy T, Ratajczak P, et al. Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation, 2004, 110: 2368–2375, 15466641, 10.1161/01.CIR.0000145160.04084.AC, 1:CAS:528:DC%2BD2cXosVSlsL4%3D

    Article  PubMed  CAS  Google Scholar 

  50. Casadei B. The emerging role of neuronal nitric oxide synthase in the regulation of myocardial function. Exp Physiol, 2006, 91: 943–955, 16990366, 10.1113/expphysiol.2006.035493, 1:CAS:528:DC%2BD28XhtlGhsL7K

    Article  PubMed  CAS  Google Scholar 

  51. Zimmet J M, Hare J M. Nitroso-redox interactions in the cardiovascular system. Circulation, 2006, 114: 1531–1544, 17015805, 10.1161/CIRCULATIONAHA.105.605519

    Article  PubMed  Google Scholar 

  52. Dawson D, Lygate C A, Zhang M H, et al. nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction. Circulation, 2005, 112: 3729–3737, 16344403, 10.1161/CIRCULATIONAHA.105.539437, 1:CAS:528:DC%2BD2MXht1yitb7J

    Article  PubMed  CAS  Google Scholar 

  53. Loyer X, Gomez A M, Milliez P, et al. Cardiomyocyte overexpression of neuronal nitric oxide synthase delays transition toward heart failure in response to pressure overload by preserving calcium cycling. Circulation, 2008, 117: 3187–3198, 18541744, 10.1161/CIRCULATIONAHA.107.741702, 1:CAS:528:DC%2BD1cXnt1ehs74%3D

    Article  PubMed  CAS  Google Scholar 

  54. Cartwright E J, Oceandy D, Neyses L. Physiological implications of the interaction between the plasma membrane calcium pump and nNOS. Pflugers Arch, 2009, 457: 665–671, 18228035, 10.1007/s00424-008-0455-z, 1:CAS:528:DC%2BD1MXjvFOhsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  55. Schuh K, Uldrijan S, Telkamp M, et al. The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol, 2001, 155: 201–205, 11591728, 10.1083/jcb.200104131, 1:CAS:528:DC%2BD3MXnslGjur0%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Colella M, Grisan F, Robert V, et al. Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: role of calcineurin/NFAT as Ca2+ signal integrators. Proc Natl Acad Sci USA, 2008, 105: 2859–2864, 18287024, 10.1073/pnas.0712316105, 1:CAS:528:DC%2BD1cXjtVSju7g%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Wilkins B J, Dai Y S, Bueno O F, et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res, 2004, 94: 110–118, 14656927, 10.1161/01.RES.0000109415.17511.18, 1:CAS:528:DC%2BD2cXhtFSr

    Article  PubMed  CAS  Google Scholar 

  58. Buch M H, Pickard A, Rodriguez A, et al. The sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated T-cell pathway via interaction with the calcineurin A catalytic subunit. J Biol Chem, 2005, 280: 29479–29487, 15955804, 10.1074/jbc.M501326200, 1:CAS:528:DC%2BD2MXns1Slsrc%3D

    Article  PubMed  CAS  Google Scholar 

  59. Crabtree G R. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell, 1999, 96: 611–614, 10089876, 10.1016/S0092-8674(00)80571-1, 1:CAS:528:DyaK1MXitVChsr0%3D

    Article  PubMed  CAS  Google Scholar 

  60. Kubis H P, Hanke N, Scheibe R J, et al. Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture. Am J Physiol Cell Physiol, 2003, 285: C56–63, 12606309, 1:CAS:528:DC%2BD3sXls1Wnt7Y%3D

    Article  PubMed  CAS  Google Scholar 

  61. Molkentin J D, Lu J R, Antos C L, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 1998, 93: 215–228, 9568714, 10.1016/S0092-8674(00)81573-1, 1:CAS:528:DyaK1cXivVygtrs%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Williams J C, Armesilla A L, Mohamed T M, et al. The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem, 2006, 281: 23341–23348, 16735509, 10.1074/jbc.M513341200, 1:CAS:528:DC%2BD28XotVCmtro%3D

    Article  PubMed  CAS  Google Scholar 

  63. Beigi F, Oskouei B N, Zheng M, et al. Cardiac nitric oxide synthase-1 localization within the cardiomyocyte is accompanied by the adaptor protein, CAPON. Nitric Oxide, 2009, 21: 226–233, 19800018, 10.1016/j.niox.2009.09.005, 1:CAS:528:DC%2BD1MXhsVWqsb3J

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Hammes A, Oberdorf S, Strehler E E, et al. Differentiation-specific isoform mRNA expression of the calmodulin-dependent plasma membrane Ca(2+)-ATPase. FASEB J, 1994, 8: 428–435, 8168693, 1:CAS:528:DyaK2cXivFGitLc%3D

    PubMed  CAS  Google Scholar 

  65. Heagerty A M, Heerkens E H, Izzard A S. Small artery structure and function in hypertension. J Cell Mol Med, 2010, 14: 1037–1043, 20455998

    PubMed  PubMed Central  Google Scholar 

  66. Schofield I, Malik R, Izzard A, et al. Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation, 2002, 106: 3037–3043, 12473548, 10.1161/01.CIR.0000041432.80615.A5

    Article  PubMed  Google Scholar 

  67. Nieves-Cintron M, Amberg G C, Navedo M F, et al. The control of Ca2+ influx and NFATc3 signaling in arterial smooth muscle during hypertension. Proc Natl Acad Sci USA, 2008, 105: 15623–15628, 18832165, 10.1073/pnas.0808759105, 1:CAS:528:DC%2BD1cXht1GitbvI

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Wellman G C, Cartin L, Eckman D M, et al. Membrane depolarization, elevated Ca(2+) entry, and gene expression in cerebral arteries of hypertensive rats. Am J Physiol, 2001, 281: H2559–2567, 1:CAS:528:DC%2BD3MXptlKns7o%3D

    CAS  Google Scholar 

  69. Hermsmeyer K, Erne P. Cellular calcium regulation in hypertension. Am J Hypertens, 1989, 2: 655–658, 2550033, 1:CAS:528:DyaL1MXmt12rsbo%3D

    Article  PubMed  CAS  Google Scholar 

  70. McCarron J G, Bradley K N, MacMillan D, et al. The sarcoplasmic reticulum, Ca2+ trapping, and wave mechanisms in smooth muscle. News Physiol Sci, 2004, 19: 138–147, 15143210, 1:CAS:528:DC%2BD2cXlsFaqsLY%3D

    PubMed  CAS  Google Scholar 

  71. McGeown J G. Interactions between inositol 1,4,5-trisphosphate receptors and ryanodine receptors in smooth muscle: one store or two? Cell Calcium, 2004, 35: 613–619, 15110151, 10.1016/j.ceca.2004.01.016, 1:CAS:528:DC%2BD2cXjsVWks7Y%3D

    Article  PubMed  CAS  Google Scholar 

  72. Ganitkevich V, Hasse V, Pfitzer G. Ca2+-dependent and Ca2+-independent regulation of smooth muscle contraction. J Muscle Res Cell Motil, 2002, 23: 47–52, 12363284, 10.1023/A:1019956529549, 1:CAS:528:DC%2BD38Xms1ektL4%3D

    Article  PubMed  CAS  Google Scholar 

  73. Shaw L, O’Neill S, Jones C J, et al. Comparison of U46619-, endothelin-1- or phenylephrine-induced changes in cellular Ca2+ profiles and Ca2+ sensitisation of constriction of pressurised rat resistance arteries. Br J Pharmacol, 2004, 141: 678–688, 14744813, 10.1038/sj.bjp.0705647, 1:CAS:528:DC%2BD2cXivVCmurs%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Gollasch M, Lohn M, Furstenau M, et al. Ca2+ channels, ‘quantized’ Ca2+ release, and differentiation of myocytes in the cardiovascular system. J Hypertens, 2000, 18: 989–998, 10953988, 10.1097/00004872-200018080-00001, 1:CAS:528:DC%2BD3cXmsVWhs7o%3D

    Article  PubMed  CAS  Google Scholar 

  75. McCarron J G, Chalmers S, Bradley K N, et al. Ca2+ microdomains in smooth muscle. Cell Calcium, 2006, 40: 461–493, 17069885, 10.1016/j.ceca.2006.08.010, 1:CAS:528:DC%2BD28XhtFKmt7jF

    Article  PubMed  CAS  Google Scholar 

  76. Shaw L, Sweeney M A, O’Neill S C, et al. Caveolae and sarcoplasmic reticular coupling in smooth muscle cells of pressurised arteries: the relevance for Ca2+ oscillations and tone. Cardiovasc Res, 2006, 69: 825–835, 16464442, 10.1016/j.cardiores.2005.12.016, 1:CAS:528:DC%2BD28XhsF2iu70%3D

    Article  PubMed  CAS  Google Scholar 

  77. Berridge M J, Bootman M D, Roderick H L. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol, 2003, 4: 517–529, 12838335, 10.1038/nrm1155, 1:CAS:528:DC%2BD3sXltVWmsr8%3D

    Article  PubMed  CAS  Google Scholar 

  78. Floyd R, Wray S. Calcium transporters and signalling in smooth muscles. Cell Calcium, 2007, 42: 467–476, 17624426, 10.1016/j.ceca.2007.05.011, 1:CAS:528:DC%2BD2sXpsFKltLo%3D

    Article  PubMed  CAS  Google Scholar 

  79. Poburko D, Kuo K H, Dai J, et al. Organellar junctions promote targeted Ca2+ signaling in smooth muscle: why two membranes are better than one. Trends Pharmacol Sci, 2004, 25: 8–15, 14723973, 10.1016/j.tips.2003.10.011, 1:CAS:528:DC%2BD2cXjtFeiuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  80. Bers D M. Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res, 2000, 87: 275–281, 10948060, 1:CAS:528:DC%2BD3cXmtFCkurk%3D

    Article  PubMed  CAS  Google Scholar 

  81. Kamishima T, McCarron J G. Ca2+ removal mechanisms in rat cerebral resistance size arteries. Biophys J, 1998, 75: 1767–1773, 9746518, 10.1016/S0006-3495(98)77618-0, 1:CAS:528:DyaK1cXmsVCktLo%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Matthew A, Shmygol A, Wray S. Ca2+ entry, efflux and release in smooth muscle. Biol Res, 2004, 37: 617–624, 15709690, 10.4067/S0716-97602004000400017, 1:STN:280:DC%2BD2M%2FotVGqsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  83. Liu L, Ishida Y, Okunade G, et al. Role of plasma membrane Ca2+-ATPase in contraction-relaxation processes of the bladder: evidence from PMCA gene-ablated mice. Am J Physiol Cell Physiol, 2006, 290: C1239–1247, 16291816, 10.1152/ajpcell.00440.2005, 1:CAS:528:DC%2BD28Xks1SmtL0%3D

    Article  PubMed  CAS  Google Scholar 

  84. Schuh K, Quaschning T, Knauer S, et al. Regulation of vascular tone in animals overexpressing the sarcolemmal calcium pump. J Biol Chem, 2003, 278: 41246–41252, 12900399, 10.1074/jbc.M307606200, 1:CAS:528:DC%2BD3sXotFWgur0%3D

    Article  PubMed  CAS  Google Scholar 

  85. Gros R, Afroze T, You X M, et al. Plasma membrane calcium ATPase overexpression in arterial smooth muscle increases vasomotor responsiveness and blood pressure. Circ Res, 2003, 93: 614–621, 12933703, 10.1161/01.RES.0000092142.19896.D9, 1:CAS:528:DC%2BD3sXnsFSgsrY%3D

    Article  PubMed  CAS  Google Scholar 

  86. Pande J, Szewczyk M M, Kuszczak I, et al. Functional effects of caloxin 1c2, a novel engineered selective inhibitor of plasma membrane Ca(2+)-pump isoform 4, on coronary artery. J Cell Mol Med, 2008, 12: 1049–1060, 18494944, 10.1111/j.1582-4934.2008.00140.x, 1:CAS:528:DC%2BD1cXotlCrurs%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Holton M, Mohamed T M, Oceandy D, et al. Endothelial nitric oxide synthase activity is inhibited by the plasma membrane calcium ATPase in human endothelial cells. Cardiovasc Res, 2010, 87: 440–448, 20211863, 10.1093/cvr/cvq077, 1:CAS:528:DC%2BC3cXptVylur0%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Mohamed T M, Baudoin-Stanley F M, Abou-Leisa R, et al. Measurement of plasma membrane calcium-calmodulin-dependent ATPase (PMCA) activity. Methods Mol Biol, 2010, 637: 333–342, 20419444, 10.1007/978-1-60761-700-6_18, 1:CAS:528:DC%2BC3cXos1Crs70%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Cardiovascular Medicine Research Group, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK

    Elizabeth J. Cartwright, Delvac Oceandy, Clare Austin & Ludwig Neyses

Authors
  1. Elizabeth J. Cartwright
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Delvac Oceandy
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Clare Austin
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Ludwig Neyses
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Elizabeth J. Cartwright.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Cartwright, E.J., Oceandy, D., Austin, C. et al. Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps. Sci. China Life Sci. 54, 691–698 (2011). https://doi.org/10.1007/s11427-011-4199-1

Download citation

  • Received: 17 May 2011

  • Accepted: 10 June 2011

  • Published: 24 July 2011

  • Issue Date: August 2011

  • DOI: https://doi.org/10.1007/s11427-011-4199-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • plasma membrane calcium/calmodulin-dependent ATPase
  • Ca2+ homeostasis
  • Ca2+ signalling
  • heart failure
  • hypertension
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.