Abstract
The plasma membrane calcium ATPases (PMCA) are a family of genes which extrude Ca2+ from the cell and are involved in the maintenance of intracellular free calcium levels and/or with Ca2+ signalling, depending on the cell type. In the cardiovascular system, Ca2+ is not only essential for contraction and relaxation but also has a vital role as a second messenger in signal transduction pathways. A complex array of mechanisms regulate intracellular free calcium levels in the heart and vasculature and a failure in these systems to maintain normal Ca2+ homeostasis has been linked to both heart failure and hypertension. This article focuses on the functions of PMCA, in particular isoform 4 (PMCA4), in the heart and vasculature and the reported links between PMCAs and contractile function, cardiac hypertrophy, cardiac rhythm and sudden cardiac death, and blood pressure control and hypertension. It is becoming clear that this family of calcium extrusion pumps have essential roles in both cardiovascular health and disease.
References
Lloyd-Jones D M, Larson M G, Leip E P, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation, 2002, 106: 3068–3072, 12473553, 10.1161/01.CIR.0000039105.49749.6F
Bleumink G S, Knetsch A M, Sturkenboom M C, et al. Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure. The Rotterdam Study. Eur Heart J, 2004, 25: 1614–1619
Bers D M. Cardiac excitation-contraction coupling. Nature, 2002, 415: 198–205, 11805843, 10.1038/415198a, 1:CAS:528:DC%2BD38Xms1Whsg%3D%3D
Frank K F, Bolck B, Brixius K, et al. Modulation of SERCA: implications for the failing human heart. Basic Res Cardiol, 2002, 97: 172–178, 10.1007/s003950200033
Pieske B, Maier L S, Piacentino V, et al. Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation, 2002, 106: 447–453, 12135944, 10.1161/01.CIR.0000023042.50192.F4, 1:CAS:528:DC%2BD38XmsVagurw%3D
Toischer K, Lehnart S E, Tenderich G, et al. K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca(2+) leak from the sarcoplasmic reticulum. Basic Res Cardiol, 2010, 105: 279–287, 19718543, 10.1007/s00395-009-0057-8, 1:CAS:528:DC%2BC3cXnvFWktA%3D%3D
Qi M, Shannon T R, Euler D E, et al. Downregulation of sarcoplasmic reticulum Ca(2+)-ATPase during progression of left ventricular hypertrophy. Am J Physiol, 1997, 272: H2416–2424, 9176313, 1:CAS:528:DyaK2sXjsFWgtLc%3D
Davia K, Davies C H, Harding S E. Effects of inhibition of sarcoplasmic reticulum calcium uptake on contraction in myocytes isolated from failing human ventricle. Cardiovasc Res, 1997, 33: 88–97, 9059532, 10.1016/S0008-6363(96)00187-3, 1:CAS:528:DyaK2sXovV2nsw%3D%3D
Borlak J, Thum T. Hallmarks of ion channel gene expression in end-stage heart failure. FASEB J, 2003, 17: 1592–1608, 12958166, 10.1096/fj.02-0889com, 1:CAS:528:DC%2BD3sXntlSrs7o%3D
Marx S O, Marks A R. Regulation of the ryanodine receptor in heart failure. Basic Res Cardiol, 2002, 97: I49–151, 12479234, 10.1007/s003950200029
Terracciano C. Functional consequences of Na/Ca exchanger overexpression in cardiac myocytes. Ann N Y Acad Sci, 2002, 976: 520–527, 12502606, 10.1111/j.1749-6632.2002.tb04786.x, 1:CAS:528:DC%2BD3sXht1yhtbw%3D
Carafoli E, James P, Strehler E E. Structure-function relationships in the calcium pump of plasma membranes. Prog Clin Biol Res, 1990, 332: 181–193, 2139512, 1:CAS:528:DyaK3cXlsVOlsrY%3D
Cartwright E J, Schuh K, Neyses L. Calcium transport in cardiovascular health and disease—the sarcolemmal calcium pump enters the stage. J Mol Cell Cardiol, 2005, 39: 403–406, 15946676, 10.1016/j.yjmcc.2005.04.007, 1:CAS:528:DC%2BD2MXosVCrs7Y%3D
Olson S, Wang M G, Carafoli E, et al. Localization of two genes encoding plasma membrane Ca2(+)-transporting ATPases to human chromosomes 1q25-32 and 12q21-23. Genomics, 1991, 9: 629–641, 1674727, 10.1016/0888-7543(91)90356-J, 1:CAS:528:DyaK3MXkvVKntb0%3D
Wang M G, Yi H, Hilfiker H, et al. Localization of two genes encoding plasma membrane Ca2+ ATPases isoforms 2 (ATP2B2) and 3 (ATP2B3) to human chromosomes 3p26 p25 and Xq28, → respectively. Cytogenet Cell Genet, 1994, 67: 41–45, 8187550, 10.1159/000133794, 1:CAS:528:DyaK2MXjvVWltQ%3D%3D
Falchetto R, Vorherr T, Carafoli E. The calmodulin-binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci, 1992, 1: 1613–1621, 1339025, 10.1002/pro.5560011209, 1:CAS:528:DyaK3sXhs1CisLg%3D
Carafoli E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J, 1994, 8: 993–1002, 7926378, 1:CAS:528:DyaK2cXmvFGlsL0%3D
Di Leva F, Domi T, Fedrizzi L, et al. The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys, 2008, 476: 65–74, 18328800, 10.1016/j.abb.2008.02.026
Strehler E E, Zacharias D A. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev, 2001, 81: 21–50, 11152753, 1:CAS:528:DC%2BD3MXitV2kt7Y%3D
Zacharias D A, Kappen C. Developmental expression of the four plasma membrane calcium ATPase (PMCA) genes in the mouse. Biochim Biophys Acta, 1999, 1428: 397–405, 10434059, 1:CAS:528:DyaK1MXmtVWjsrw%3D
Okunade G W, Miller M L, Pyne G J, et al. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem, 2004, 279: 33742–33750, 15178683, 10.1074/jbc.M404628200, 1:CAS:528:DC%2BD2cXmtFOiu78%3D
Stauffer T P, Guerini D, Carafoli E. Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. J Biol Chem, 1995, 270: 12184–12190, 7538133, 10.1074/jbc.270.11.6056, 1:CAS:528:DyaK2MXlvVWktLY%3D
Dumont R A, Lins U, Filoteo A G, et al. Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci, 2001, 21: 5066–5078, 11438582, 1:CAS:528:DC%2BD3MXkvFSku7c%3D
Ficarella R, Di Leva F, Bortolozzi M, et al. A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc Natl Acad Sci USA, 2007, 104: 1516–1521, 17234811, 10.1073/pnas.0609775104, 1:CAS:528:DC%2BD2sXhslaktLg%3D
Reinhardt T A, Filoteo A G, Penniston J T, et al. Ca(2+)-ATPase protein expression in mammary tissue. Am J Physiol Cell Physiol, 2000, 279: C1595–1602, 11029307, 1:CAS:528:DC%2BD3cXotFaru70%3D
Stahl W L, Eakin T J, Owens J W, et al. Plasma membrane Ca(2+)-ATPase isoforms: distribution of mRNAs in rat brain by in situ hybridization. Brain Res Mol Brain Res, 1992, 16: 223–231, 1337931, 10.1016/0169-328X(92)90229-5, 1:CAS:528:DyaK3sXnslKntQ%3D%3D
Brown B J, Hilfiker H, DeMarco S J, et al. Primary structure of human plasma membrane Ca(2+)-ATPase isoform 3. Biochim Biophys Acta, 1996, 1283: 10–13, 8765088, 10.1016/0005-2736(96)00108-3
Greeb J, Shull G E. Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle. J Biol Chem, 1989, 264: 18569–18576, 2530223, 1:CAS:528:DyaK3cXhvFaqsro%3D
Kamagate A, Herchuelz A, Bollen A, et al. Expression of multiple plasma membrane Ca(2+)-ATPases in rat pancreatic islet cells. Cell Calcium, 2000, 27: 231–246, 10858669, 10.1054/ceca.2000.0116, 1:CAS:528:DC%2BD3cXjsFeksLc%3D
Brandt P, Neve R L, Kammesheidt A, et al. Analysis of the tissue-specific distribution of mRNAs encoding the plasma membrane calcium-pumping ATPases and characterization of an alternately spliced form of PMCA4 at the cDNA and genomic levels. J Biol Chem, 1992, 267: 4376–4385, 1531651, 1:CAS:528:DyaK3sXhs1Gks7w%3D
Howard A, Legon S, Walters J R. Human and rat intestinal plasma membrane calcium pump isoforms. Am J Physiol, 1993, 265: G917–925, 7694502, 1:STN:280:DyaK2c%2Fls12kug%3D%3D
Jones S, Solomon A, Sanz-Rosa D, et al. The plasma membrane calcium ATPase (PMCA) modulates calcium homeostasis, intracellular signalling events and function in platelets. J Thromb Haemost, 2010, 8: 2766–2774, 20880258, 10.1111/j.1538-7836.2010.04076.x, 1:CAS:528:DC%2BC3MXhtFGgur4%3D
Oceandy D, Cartwright EJ, Emerson M, et al. Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b. Circulation, 2007, 115: 483–492, 17242280, 10.1161/CIRCULATIONAHA.106.643791, 1:CAS:528:DC%2BD2sXnvF2mtQ%3D%3D
Pande J, Mallhi K K, Sawh A, et al. Aortic smooth muscle and endothelial plasma membrane Ca2+ pump isoforms are inhibited differently by the extracellular inhibitor caloxin 1b1. Am J Physiol Cell Physiol, 2006, 290: C1341–1349, 16452157, 10.1152/ajpcell.00573.2005, 1:CAS:528:DC%2BD28XkvFKmtLc%3D
Schuh K, Cartwright E J, Jankevics E, et al. Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem, 2004, 279: 28220–28226, 15078889, 10.1074/jbc.M312599200, 1:CAS:528:DC%2BD2cXlt1Cltbo%3D
Schultz J M, Yang Y, Caride A J, et al. Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N Engl J Med, 2005, 352: 1557–1564, 15829536, 10.1056/NEJMoa043899, 1:CAS:528:DC%2BD2MXjtFGntrc%3D
VanHouten J, Sullivan C, Bazinet C, et al. PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer. Proc Natl Acad Sci USA, 2010, 107: 11405–11410, 20534448, 10.1073/pnas.0911186107, 1:CAS:528:DC%2BC3cXot1ahu78%3D
Ueda K, Valdivia C, Medeiros-Domingo A, et al. Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc Natl Acad Sci USA, 2008, 105: 9355–9360, 18591664, 10.1073/pnas.0801294105, 1:CAS:528:DC%2BD1cXosFars78%3D
Arking D E, Pfeufer A, Post W, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet, 2006, 38: 644–651, 16648850, 10.1038/ng1790, 1:CAS:528:DC%2BD28XltVOhtbs%3D
Cho Y S, Go M J, Kim Y J, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet, 2009, 41: 527–534, 19396169, 10.1038/ng.357, 1:CAS:528:DC%2BD1MXltValt7k%3D
Levy D, Ehret G B, Rice K, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet, 2009, 41: 677–687, 19430479, 10.1038/ng.384, 1:CAS:528:DC%2BD1MXls1Cmurk%3D
Tabara Y, Kohara K, Kita Y, et al. Common variants in the ATP2B1 gene are associated with susceptibility to hypertension: the Japanese Millennium Genome Project. Hypertension, 2010, 56: 973–980, 20921432, 10.1161/HYPERTENSIONAHA.110.153429, 1:CAS:528:DC%2BC3cXhtlSqu7%2FK
Takeuchi F, Isono M, Katsuya T, et al. Blood pressure and hypertension are associated with 7 loci in the Japanese population. Circulation, 2010, 121: 2302–2309, 20479155, 10.1161/CIRCULATIONAHA.109.904664
Kozel P J, Friedman R A, Erway L C, et al. Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J Biol Chem, 1998, 273: 18693–18696, 9668038, 10.1074/jbc.273.30.18693, 1:CAS:528:DyaK1cXltFGrs7w%3D
Street V A, McKee-Johnson J W, Fonseca R C, et al. Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet, 1998, 19: 390–394, 9697703, 10.1038/1284, 1:CAS:528:DyaK1cXlt1CisrY%3D
Takahashi K, Kitamura K. A point mutation in a plasma membrane Ca(2+)-ATPase gene causes deafness in Wriggle Mouse Sagami. Biochem Biophys Res Commun, 1999, 261: 773–778, 10441500, 10.1006/bbrc.1999.1102, 1:CAS:528:DyaK1MXltVagsLk%3D
Mohamed T M, Oceandy D, Prehar S, et al. Specific role of neuronal nitric-oxide synthase when tethered to the plasma membrane calcium pump in regulating the beta-adrenergic signal in the myocardium. J Biol Chem, 2009, 284: 12091–12098, 19278978, 10.1074/jbc.M809112200, 1:CAS:528:DC%2BD1MXltVCmtbc%3D
Wu X, Chang B, Blair N S, et al. Plasma membrane Ca2+-ATPase isoform 4 antagonizes cardiac hypertrophy in association with calcineurin inhibition in rodents. J Clin Invest, 2009, 119: 976–985, 19287093, 1:CAS:528:DC%2BD1MXktlSntL4%3D
Bendall J K, Damy T, Ratajczak P, et al. Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation, 2004, 110: 2368–2375, 15466641, 10.1161/01.CIR.0000145160.04084.AC, 1:CAS:528:DC%2BD2cXosVSlsL4%3D
Casadei B. The emerging role of neuronal nitric oxide synthase in the regulation of myocardial function. Exp Physiol, 2006, 91: 943–955, 16990366, 10.1113/expphysiol.2006.035493, 1:CAS:528:DC%2BD28XhtlGhsL7K
Zimmet J M, Hare J M. Nitroso-redox interactions in the cardiovascular system. Circulation, 2006, 114: 1531–1544, 17015805, 10.1161/CIRCULATIONAHA.105.605519
Dawson D, Lygate C A, Zhang M H, et al. nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction. Circulation, 2005, 112: 3729–3737, 16344403, 10.1161/CIRCULATIONAHA.105.539437, 1:CAS:528:DC%2BD2MXht1yitb7J
Loyer X, Gomez A M, Milliez P, et al. Cardiomyocyte overexpression of neuronal nitric oxide synthase delays transition toward heart failure in response to pressure overload by preserving calcium cycling. Circulation, 2008, 117: 3187–3198, 18541744, 10.1161/CIRCULATIONAHA.107.741702, 1:CAS:528:DC%2BD1cXnt1ehs74%3D
Cartwright E J, Oceandy D, Neyses L. Physiological implications of the interaction between the plasma membrane calcium pump and nNOS. Pflugers Arch, 2009, 457: 665–671, 18228035, 10.1007/s00424-008-0455-z, 1:CAS:528:DC%2BD1MXjvFOhsg%3D%3D
Schuh K, Uldrijan S, Telkamp M, et al. The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol, 2001, 155: 201–205, 11591728, 10.1083/jcb.200104131, 1:CAS:528:DC%2BD3MXnslGjur0%3D
Colella M, Grisan F, Robert V, et al. Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: role of calcineurin/NFAT as Ca2+ signal integrators. Proc Natl Acad Sci USA, 2008, 105: 2859–2864, 18287024, 10.1073/pnas.0712316105, 1:CAS:528:DC%2BD1cXjtVSju7g%3D
Wilkins B J, Dai Y S, Bueno O F, et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res, 2004, 94: 110–118, 14656927, 10.1161/01.RES.0000109415.17511.18, 1:CAS:528:DC%2BD2cXhtFSr
Buch M H, Pickard A, Rodriguez A, et al. The sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated T-cell pathway via interaction with the calcineurin A catalytic subunit. J Biol Chem, 2005, 280: 29479–29487, 15955804, 10.1074/jbc.M501326200, 1:CAS:528:DC%2BD2MXns1Slsrc%3D
Crabtree G R. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell, 1999, 96: 611–614, 10089876, 10.1016/S0092-8674(00)80571-1, 1:CAS:528:DyaK1MXitVChsr0%3D
Kubis H P, Hanke N, Scheibe R J, et al. Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture. Am J Physiol Cell Physiol, 2003, 285: C56–63, 12606309, 1:CAS:528:DC%2BD3sXls1Wnt7Y%3D
Molkentin J D, Lu J R, Antos C L, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 1998, 93: 215–228, 9568714, 10.1016/S0092-8674(00)81573-1, 1:CAS:528:DyaK1cXivVygtrs%3D
Williams J C, Armesilla A L, Mohamed T M, et al. The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem, 2006, 281: 23341–23348, 16735509, 10.1074/jbc.M513341200, 1:CAS:528:DC%2BD28XotVCmtro%3D
Beigi F, Oskouei B N, Zheng M, et al. Cardiac nitric oxide synthase-1 localization within the cardiomyocyte is accompanied by the adaptor protein, CAPON. Nitric Oxide, 2009, 21: 226–233, 19800018, 10.1016/j.niox.2009.09.005, 1:CAS:528:DC%2BD1MXhsVWqsb3J
Hammes A, Oberdorf S, Strehler E E, et al. Differentiation-specific isoform mRNA expression of the calmodulin-dependent plasma membrane Ca(2+)-ATPase. FASEB J, 1994, 8: 428–435, 8168693, 1:CAS:528:DyaK2cXivFGitLc%3D
Heagerty A M, Heerkens E H, Izzard A S. Small artery structure and function in hypertension. J Cell Mol Med, 2010, 14: 1037–1043, 20455998
Schofield I, Malik R, Izzard A, et al. Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation, 2002, 106: 3037–3043, 12473548, 10.1161/01.CIR.0000041432.80615.A5
Nieves-Cintron M, Amberg G C, Navedo M F, et al. The control of Ca2+ influx and NFATc3 signaling in arterial smooth muscle during hypertension. Proc Natl Acad Sci USA, 2008, 105: 15623–15628, 18832165, 10.1073/pnas.0808759105, 1:CAS:528:DC%2BD1cXht1GitbvI
Wellman G C, Cartin L, Eckman D M, et al. Membrane depolarization, elevated Ca(2+) entry, and gene expression in cerebral arteries of hypertensive rats. Am J Physiol, 2001, 281: H2559–2567, 1:CAS:528:DC%2BD3MXptlKns7o%3D
Hermsmeyer K, Erne P. Cellular calcium regulation in hypertension. Am J Hypertens, 1989, 2: 655–658, 2550033, 1:CAS:528:DyaL1MXmt12rsbo%3D
McCarron J G, Bradley K N, MacMillan D, et al. The sarcoplasmic reticulum, Ca2+ trapping, and wave mechanisms in smooth muscle. News Physiol Sci, 2004, 19: 138–147, 15143210, 1:CAS:528:DC%2BD2cXlsFaqsLY%3D
McGeown J G. Interactions between inositol 1,4,5-trisphosphate receptors and ryanodine receptors in smooth muscle: one store or two? Cell Calcium, 2004, 35: 613–619, 15110151, 10.1016/j.ceca.2004.01.016, 1:CAS:528:DC%2BD2cXjsVWks7Y%3D
Ganitkevich V, Hasse V, Pfitzer G. Ca2+-dependent and Ca2+-independent regulation of smooth muscle contraction. J Muscle Res Cell Motil, 2002, 23: 47–52, 12363284, 10.1023/A:1019956529549, 1:CAS:528:DC%2BD38Xms1ektL4%3D
Shaw L, O’Neill S, Jones C J, et al. Comparison of U46619-, endothelin-1- or phenylephrine-induced changes in cellular Ca2+ profiles and Ca2+ sensitisation of constriction of pressurised rat resistance arteries. Br J Pharmacol, 2004, 141: 678–688, 14744813, 10.1038/sj.bjp.0705647, 1:CAS:528:DC%2BD2cXivVCmurs%3D
Gollasch M, Lohn M, Furstenau M, et al. Ca2+ channels, ‘quantized’ Ca2+ release, and differentiation of myocytes in the cardiovascular system. J Hypertens, 2000, 18: 989–998, 10953988, 10.1097/00004872-200018080-00001, 1:CAS:528:DC%2BD3cXmsVWhs7o%3D
McCarron J G, Chalmers S, Bradley K N, et al. Ca2+ microdomains in smooth muscle. Cell Calcium, 2006, 40: 461–493, 17069885, 10.1016/j.ceca.2006.08.010, 1:CAS:528:DC%2BD28XhtFKmt7jF
Shaw L, Sweeney M A, O’Neill S C, et al. Caveolae and sarcoplasmic reticular coupling in smooth muscle cells of pressurised arteries: the relevance for Ca2+ oscillations and tone. Cardiovasc Res, 2006, 69: 825–835, 16464442, 10.1016/j.cardiores.2005.12.016, 1:CAS:528:DC%2BD28XhsF2iu70%3D
Berridge M J, Bootman M D, Roderick H L. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol, 2003, 4: 517–529, 12838335, 10.1038/nrm1155, 1:CAS:528:DC%2BD3sXltVWmsr8%3D
Floyd R, Wray S. Calcium transporters and signalling in smooth muscles. Cell Calcium, 2007, 42: 467–476, 17624426, 10.1016/j.ceca.2007.05.011, 1:CAS:528:DC%2BD2sXpsFKltLo%3D
Poburko D, Kuo K H, Dai J, et al. Organellar junctions promote targeted Ca2+ signaling in smooth muscle: why two membranes are better than one. Trends Pharmacol Sci, 2004, 25: 8–15, 14723973, 10.1016/j.tips.2003.10.011, 1:CAS:528:DC%2BD2cXjtFeiuw%3D%3D
Bers D M. Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res, 2000, 87: 275–281, 10948060, 1:CAS:528:DC%2BD3cXmtFCkurk%3D
Kamishima T, McCarron J G. Ca2+ removal mechanisms in rat cerebral resistance size arteries. Biophys J, 1998, 75: 1767–1773, 9746518, 10.1016/S0006-3495(98)77618-0, 1:CAS:528:DyaK1cXmsVCktLo%3D
Matthew A, Shmygol A, Wray S. Ca2+ entry, efflux and release in smooth muscle. Biol Res, 2004, 37: 617–624, 15709690, 10.4067/S0716-97602004000400017, 1:STN:280:DC%2BD2M%2FotVGqsQ%3D%3D
Liu L, Ishida Y, Okunade G, et al. Role of plasma membrane Ca2+-ATPase in contraction-relaxation processes of the bladder: evidence from PMCA gene-ablated mice. Am J Physiol Cell Physiol, 2006, 290: C1239–1247, 16291816, 10.1152/ajpcell.00440.2005, 1:CAS:528:DC%2BD28Xks1SmtL0%3D
Schuh K, Quaschning T, Knauer S, et al. Regulation of vascular tone in animals overexpressing the sarcolemmal calcium pump. J Biol Chem, 2003, 278: 41246–41252, 12900399, 10.1074/jbc.M307606200, 1:CAS:528:DC%2BD3sXotFWgur0%3D
Gros R, Afroze T, You X M, et al. Plasma membrane calcium ATPase overexpression in arterial smooth muscle increases vasomotor responsiveness and blood pressure. Circ Res, 2003, 93: 614–621, 12933703, 10.1161/01.RES.0000092142.19896.D9, 1:CAS:528:DC%2BD3sXnsFSgsrY%3D
Pande J, Szewczyk M M, Kuszczak I, et al. Functional effects of caloxin 1c2, a novel engineered selective inhibitor of plasma membrane Ca(2+)-pump isoform 4, on coronary artery. J Cell Mol Med, 2008, 12: 1049–1060, 18494944, 10.1111/j.1582-4934.2008.00140.x, 1:CAS:528:DC%2BD1cXotlCrurs%3D
Holton M, Mohamed T M, Oceandy D, et al. Endothelial nitric oxide synthase activity is inhibited by the plasma membrane calcium ATPase in human endothelial cells. Cardiovasc Res, 2010, 87: 440–448, 20211863, 10.1093/cvr/cvq077, 1:CAS:528:DC%2BC3cXptVylur0%3D
Mohamed T M, Baudoin-Stanley F M, Abou-Leisa R, et al. Measurement of plasma membrane calcium-calmodulin-dependent ATPase (PMCA) activity. Methods Mol Biol, 2010, 637: 333–342, 20419444, 10.1007/978-1-60761-700-6_18, 1:CAS:528:DC%2BC3cXos1Crs70%3D
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is published with open access at Springerlink.com
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Cartwright, E.J., Oceandy, D., Austin, C. et al. Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps. Sci. China Life Sci. 54, 691–698 (2011). https://doi.org/10.1007/s11427-011-4199-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11427-011-4199-1
Keywords
- plasma membrane calcium/calmodulin-dependent ATPase
- Ca2+ homeostasis
- Ca2+ signalling
- heart failure
- hypertension