Skip to main content
Log in

Stress responsive gene CIPK14 is involved in phytochrome A-mediated far-red light inhibition of greening in Arabidopsis

  • Research Papers
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

In this study, we show that CIPK14, a stress responsive CBL-interacting protein kinase gene, is involved in phytochrome A-mediated far-red light inhibition of greening in Arabidopsis seedlings. The CIPK14-impairment mutant cipk14 grown in continuous far-red (FR) light did not show greening when exposed to white light illumination for 15 h. By contrast, the FR-grown phytochrome A null mutant phyA greened within 0.5 h of exposure to white light. Although greening of Col-4 (wild-type) was not completely abolished by FR, it exhibited a significantly decreased greening capacity compared with that of phyA. Further analyses demonstrated that the expression of protochlorophyllide reductase (POR) genes was correlated with the greening ability of the genotypes. In addition, CIPK14 appeared to be regulated by both the circadian clock and PhyA. Taken together, these results suggest that CIPK14 plays a role in PhyA-mediated FR inhibition of seedling greening, and that a Ca-related kinase may be involved in a previously undefined branch point in the phytochrome A signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trewavas A J, Knight M R. Mechanical signalling, calcium and plant form. Plant Mol Biol, 1994, 26: 1329–1341 1:CAS:528:DyaK2MXjvFelu7g%3D, 10.1007/BF00016478, 7858194

    Article  PubMed  CAS  Google Scholar 

  2. Weinl S, Kudla J. The CBL-CIPK Ca2+-decoding signalling network: function and perspectives. New Phytol, 2009, 184: 517–528 1:CAS:528:DC%2BD1MXhsVOgs7vE, 10.1111/j.1469-8137.2009.02938.x, 19860013

    Article  PubMed  CAS  Google Scholar 

  3. McAinsh M R, Pittman J K. Shaping the calcium signature. New Phytol, 2009, 181: 275–294 1:CAS:528:DC%2BD1MXhvV2ns7k%3D, 10.1111/j.1469-8137.2008.02682.x, 19121028

    Article  PubMed  CAS  Google Scholar 

  4. Chung E, Park J M, Oh S K, et al. Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses. Planta, 2004, 220: 286–295 1:CAS:528:DC%2BD2cXhtVensrfI, 10.1007/s00425-004-1372-9, 15449060

    Article  PubMed  CAS  Google Scholar 

  5. Ludwig A A, Saitoh H, Felix G, et al. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci USA, 2005, 102: 10736–10741 1:CAS:528:DC%2BD2MXntVShsrs%3D, 10.1073/pnas.0502954102, 16027369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Frohnmeyer H, Loyall L, Blatt MR, et al. Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+ and stimulates gene expression in transgenic parsley cell cultures. Plant J, 1999, 20: 109–117 1:CAS:528:DyaK1MXnsVGqsr8%3D, 10.1046/j.1365-313X.1999.00584.x, 10571870

    Article  PubMed  CAS  Google Scholar 

  7. Kim K N, Cheong Y H, Grant J J, et al. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell, 2003, 15: 411–423 1:CAS:528:DC%2BD3sXhtlOmtbo%3D, 10.1105/tpc.006858, 12566581

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Trewavas A J, Malhó R. Ca2+ signalling in plant cells: the big network! Curr Opin Plant Biol, 1998, 1: 428–433 1:CAS:528:DyaK1cXnt1Oisrc%3D, 10.1016/S1369-5266(98)80268-9, 10066614

    Article  PubMed  CAS  Google Scholar 

  9. Nie X, Durnin D C, Igamberdiev A U, et al. Cytosolic calcium is involved in the regulation of barley hemoglobin gene expression. Planta, 2006, 223: 542–549 1:CAS:528:DC%2BD28XivFWjsbs%3D, 10.1007/s00425-005-0094-y, 16177910

    Article  PubMed  CAS  Google Scholar 

  10. Kolukisaoglu U, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 2004, 134: 43–58 1:CAS:528:DC%2BD2cXhtVagtbo%3D, 10.1104/pp.103.033068, 14730064

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 2000, 12: 1667–1678 1:CAS:528:DC%2BD3cXnsVyltrk%3D, 10.1105/tpc.12.9.1667, 11006339

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Nagae M, Nozawa A, Koizumi N, et al. The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. J Biol Chem, 2003, 278: 42240–42246 1:CAS:528:DC%2BD3sXot1amtbc%3D, 10.1074/jbc.M303630200, 12871972

    Article  PubMed  CAS  Google Scholar 

  13. Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA, 2000, 97: 3735–3740 1:CAS:528:DC%2BD3cXitlajsrg%3D, 10.1073/pnas.040577697, 10725350

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Hrabak E M, Chan C W, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003, 132: 666–680 1:CAS:528:DC%2BD3sXkslertr8%3D, 10.1104/pp.102.011999, 12805596

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273 1:CAS:528:DC%2BD38XlsVWhtbc%3D, 10.1146/annurev.arplant.53.091401.143329, 12221975

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Pandey G K, Grant J J, Cheong Y H, et al. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Molecular Plant, 2008, 1: 238–248 1:CAS:528:DC%2BD1cXoslyks7w%3D, 10.1093/mp/ssn003, 19825536

    Article  PubMed  CAS  Google Scholar 

  17. Qin Y Z, Li X, Guo M, et al. Regulation of salt and ABA responses by CIPK14, a calcium sensor interacting protein kinase in Arabidopsis. Sci China Ser C-Life Sci, 2008, 51: 391–401 1:CAS:528:DC%2BD1cXoslSksLg%3D, 10.1007/s11427-008-0059-z

    Article  CAS  Google Scholar 

  18. Johnson C H, Knight M R, Kondo T, et al. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science, 1995, 269: 1863–1865 1:CAS:528:DyaK2MXotlKqtLg%3D, 10.1126/science.7569925, 7569925

    Article  PubMed  CAS  Google Scholar 

  19. Webb A A R. The physiology of circadian rhythms in plants. New Phytol, 2003, 160: 281–303 1:CAS:528:DC%2BD3sXpt1Ogsbo%3D, 10.1046/j.1469-8137.2003.00895.x

    Article  CAS  Google Scholar 

  20. Dodd A N, Love J, Webb A A R. The plant clock shows its metal: circadian regulation of cytosolic free Ca2+. Trends Plant Sci, 2005, 10: 15–21 1:CAS:528:DC%2BD2MXitFarug%3D%3D, 10.1016/j.tplants.2004.12.001, 15642519

    Article  PubMed  CAS  Google Scholar 

  21. Eckardt N A. Circadian regulation of Ca2+ signalling. Plant Cell, 2007, 19: 3317

    Google Scholar 

  22. Love J, Dodd A N, Webb A A R. Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell, 2004, 16: 956–966 1:CAS:528:DC%2BD2cXjt1ynsb8%3D, 10.1105/tpc.020214, 15031410

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Harmer S L, Hogenesch J B, Straume M, et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 2000, 290: 2110–2113 1:CAS:528:DC%2BD3cXptVyisrw%3D, 10.1126/science.290.5499.2110, 11118138

    Article  PubMed  CAS  Google Scholar 

  24. Edwards K D, Anderson P E, Hall A, et al. FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell, 2006, 18: 639–650 1:CAS:528:DC%2BD28XisFahur4%3D, 10.1105/tpc.105.038315, 16473970

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Covington M F, Harmer S L. The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol, 2007, 5: e222 10.1371/journal.pbio.0050222, 17683202

    Article  PubMed  PubMed Central  Google Scholar 

  26. Michael T P, Mockler T C, Breton G, et al. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet, 2008, 4: e14 10.1371/journal.pgen.0040014, 18248097

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mizuno T, Yamashino T. Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol, 2008, 49: 481–487 1:CAS:528:DC%2BD1cXkvVWjsro%3D, 10.1093/pcp/pcn008, 18202002

    Article  PubMed  CAS  Google Scholar 

  28. Xu X, Hotta C T, Dodd A N, et al. Distinct light and clock modulation of cytosolic free Ca2+ oscillations and rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 promoter activity in Arabidopsis. Plant Cell, 2007, 19: 3474–3490 1:CAS:528:DC%2BD1cXns1emsw%3D%3D, 10.1105/tpc.106.046011, 17982000

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Schafer E, Nagy F, eds. Photomorphogenesis in Plants and Bacteria. 3rd ed. Dordrecht: Springer, 2006

    Google Scholar 

  30. Casson S A, Franklin K A, Gray J E, et al. Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol. 2009, 19: 229–234 1:CAS:528:DC%2BD1MXhs1aisL0%3D, 10.1016/j.cub.2008.12.046, 19185498

    Article  PubMed  CAS  Google Scholar 

  31. Kang C Y, Lian H L, Wang F F, et al. Cryptochromes, phytochromes, and COP1 regulate light controlled stomatal development in Arabidopsis. Plant Cell, 2009, 21: 2624–2641 1:CAS:528:DC%2BD1MXhsVejtbfM, 10.1105/tpc.109.069765, 19794114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Somers D E, Devlin P F, Kay S A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science, 1998, 282: 1488–1494 1:CAS:528:DyaK1cXns1yqtL4%3D, 10.1126/science.282.5393.1488, 9822379

    Article  PubMed  CAS  Google Scholar 

  33. Sharrock R A, Quail P H. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev, 1989, 3: 1745–1757 1:CAS:528:DyaK3cXktFyltro%3D, 10.1101/gad.3.11.1745, 2606345

    Article  PubMed  CAS  Google Scholar 

  34. Clack T, Mathews S, Sharrock R A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequence and expression of PHYD and PHYE. Plant Mol Biol, 1994, 25: 413–427 1:CAS:528:DyaK2cXmt1egtLs%3D, 10.1007/BF00043870, 8049367

    Article  PubMed  CAS  Google Scholar 

  35. Franklin K A, Quail P H. Phytochrome functions in Arabidopsis development. J Exp Bot, 2010, 61: 11–24 1:CAS:528:DC%2BD1MXhsFGnsr7J, 10.1093/jxb/erp304, 19815685

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Wang H, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci, 2003, 8: 172–178 1:CAS:528:DC%2BD3sXjtFeqs7k%3D, 10.1016/S1360-1385(03)00049-9, 12711229

    Article  PubMed  CAS  Google Scholar 

  37. Clough R C, Vierstra R D. Phytochrome degradation. Plant Cell Environ, 1997, 20: 713–721 1:CAS:528:DyaK2sXmt1Sqs7Y%3D, 10.1046/j.1365-3040.1997.d01-107.x

    Article  CAS  Google Scholar 

  38. Sharrock R A, Clack T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol, 2002, 130: 442–456 1:CAS:528:DC%2BD38XntFOrtL0%3D, 10.1104/pp.005389, 12226523

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Guo H, Mockler T, Duong H, et al. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science, 2001, 19: 487–490 10.1126/science.291.5503.487

    Article  Google Scholar 

  40. Reed J W, Nagatani A, Elich T D, et al. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis de velopment. Plant Physiol, 1994, 104: 1139–1149 1:CAS:528:DyaK2cXjtF2mtLw%3D, 12232154

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Mockler T, Yang H, Yu X, et al. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci USA, 2003, 100: 2140–2145 1:CAS:528:DC%2BD3sXhsFGrt7w%3D, 10.1073/pnas.0437826100, 12578985

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Mockler T C, Guo H, Yang H, et al. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development, 1999, 126: 2073–2082 1:CAS:528:DyaK1MXjvVanu7g%3D, 10207133

    PubMed  CAS  Google Scholar 

  43. Yu X, Shalitin D, Liu X, et al. De-repression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2. Proc Natl Acad Sci USA, 2007, 104: 7289–7294 1:CAS:528:DC%2BD2sXls1OgtLg%3D, 10.1073/pnas.0701912104, 17438275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Barnes S A, Nishizawa N K, Quaggio R B, et al. Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell, 1996, 8: 601–615 1:CAS:528:DyaK28Xis1Grtrw%3D, 10.1105/tpc.8.4.601, 8624438

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Boylan M T, Quail P H. Phytochrome A overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc Natl Acad Sci USA, 1991, 88: 10806–10810 1:CAS:528:DyaK38XlsFOjsw%3D%3D, 10.1073/pnas.88.23.10806, 11607244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Parks B M, Quail P H. hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell, 1993, 5: 39–48 1:CAS:528:DyaK3sXhs1GgtL4%3D, 10.1105/tpc.5.1.39, 8439743

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. McCormac A C, Terry M J. Loss of nuclear gene expression during the phytochrome A-mediated far-red block of greening response. Plant Physiol, 2002, 130: 402–414 1:CAS:528:DC%2BD38XntFOrt7c%3D, 10.1104/pp.003806, 12226519

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Armstrong G A, Runge S, Frick G, et al. Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol, 1995, 108: 1505–1517 1:CAS:528:DyaK2MXnsVagsb8%3D, 10.1104/pp.108.4.1505, 7659751

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Holtorf H, Reinbothe S, Reinbothe C, et al. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA, 1995, 92: 3254–3258 1:CAS:528:DyaK2MXltFSntLw%3D, 10.1073/pnas.92.8.3254, 7724548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XianZhou Nie or XuanMing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., Guo, M., Li, X. et al. Stress responsive gene CIPK14 is involved in phytochrome A-mediated far-red light inhibition of greening in Arabidopsis. Sci. China Life Sci. 53, 1307–1314 (2010). https://doi.org/10.1007/s11427-010-4078-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4078-1

Keywords

Navigation