Skip to main content
Log in

Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia

  • Research Papers
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

To find a promising alternative to neurons or schwann cells (SCs) for peripheral nerve repair applications, this study sought to isolate stem cells from fetal rat dorsal root ganglion (DRG) explants. Molecular expression analysis confirmed neural stem cell characteristics of DRG-derived neurospheres in terms of expressing neural stem cell-specific genes and a set of well-defined genes related to stem cell niches and glial fate decision. Under the influence of neurotrophic factors, bFGF and NGF, the neurospheres gave rise to neurofilament-expressing neurons and S100-expressing Schwann cell-like cells by different pathways. This study suggests that a subpopulation of stem cells that reside in DRGs is the progenitor of neurons and glia, which could directly induce the differentiation toward neurons, or SCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shihabuddin L S, Ray J, Gage F H. Stem cell technology for basic science and clinical applications. Arch Neurol, 1999, 56: 29–32 1:STN:280:DyaK1M7itVKgsQ%3D%3D, 10.1001/archneur.56.1.29, 9923758

    Article  PubMed  CAS  Google Scholar 

  2. Stemple D L, Anderson D J. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell, 1992, 71: 973–985 1:CAS:528:DyaK3sXpslCnsQ%3D%3D, 10.1016/0092-8674(92)90393-Q, 1458542

    Article  PubMed  CAS  Google Scholar 

  3. Akiyama Y, Honmou O, Kato T, et al. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol, 2001, 167: 27–39 1:CAS:528:DC%2BD3MXls1WntQ%3D%3D, 10.1006/exnr.2000.7539, 11161590

    Article  PubMed  CAS  Google Scholar 

  4. Arsenijevic Y, Villemure J G, Brunet J F, et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol, 2001, 170: 48–62 1:CAS:528:DC%2BD3MXksF2mt78%3D, 10.1006/exnr.2001.7691, 11421583

    Article  PubMed  CAS  Google Scholar 

  5. Iwanami A, Kaneko S, Nakamura M, et al. Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res, 2005, 80: 182–190 1:CAS:528:DC%2BD2MXjtFajtr4%3D, 10.1002/jnr.20436, 15772979

    Article  PubMed  CAS  Google Scholar 

  6. Arnhold S, Heiduschka P, Klein H, et al. Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci, 2006, 47: 4121–4129 10.1167/iovs.04-1501, 16936132

    Article  PubMed  Google Scholar 

  7. Namaka M P, Sawchuk M, MacDonald S C, et al. Neurogenesis in postnatal mouse dorsal root ganglia. Exp Neurol, 172: 60–69

  8. Ciaroni S, Cecchini T, Cuppini R, et al. Are there proliferating neuronal precursors in adult rat dorsal root ganglia? Neurosci Lett, 2000, 281: 69–71 1:CAS:528:DC%2BD3cXht1Oisbk%3D, 10.1016/S0304-3940(00)00785-0, 10686418

    Article  PubMed  CAS  Google Scholar 

  9. Li H Y, Say E H, Zhou X F. Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells, 2007, 25: 2053–2065 1:CAS:528:DC%2BD2sXhtVSqsbfJ, 10.1634/stemcells.2007-0080, 17525237

    Article  PubMed  CAS  Google Scholar 

  10. Paulsen N, Matsumoto S G. Progenitor cells with the capacity to differentiate into sympathetic-like neurons are transiently detected in mammalian embryonic dorsal root ganglia. J Neurobiol, 2000, 43: 31–39 1:STN:280:DC%2BD3c3hvFehug%3D%3D, 10.1002/(SICI)1097-4695(200004)43:1<31::AID-NEU3>3.0.CO;2-S, 10756064

    Article  PubMed  CAS  Google Scholar 

  11. Williams J P, Wu J, Johansson G, et al. Nf1 mutation expands an EGFR-dependent peripheral nerve progenitor that confers neurofibroma tumorigenic potential. Cell Stem Cell, 2008, 3: 658–669 1:CAS:528:DC%2BD1cXhsFCqsLjF, 10.1016/j.stem.2008.10.003, 19041782

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Kuo L T, Simpson A, Schanzer A, et al. Effects of systemically administered NT-3 on sensory neuron loss and nestin expression following axotomy. J Comp Neurol, 2005, 482: 320–332 1:CAS:528:DC%2BD2MXhvFGntrs%3D, 10.1002/cne.20400, 15669078

    Article  PubMed  CAS  Google Scholar 

  13. Lendahl U, Zimmerman L B, McKay R D. CNS stem cells express a new class of intermediate filament protein. Cell, 1990, 60: 585–595 1:CAS:528:DyaK3cXkvFagsro%3D, 10.1016/0092-8674(90)90662-X, 1689217

    Article  PubMed  CAS  Google Scholar 

  14. Joseph N M, Mukouyama Y S, Mosher J T, et al. Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development, 2004, 131: 5599–5612 1:CAS:528:DC%2BD2cXhtFSgs7%2FK, 10.1242/dev.01429, 15496445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Kleber M, Lee H Y, Wurdak H, et al. Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. J Cell Biol, 2005, 169: 309–320 1:CAS:528:DC%2BD2MXjslartrs%3D, 10.1083/jcb.200411095, 15837799

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Cheung M, Chaboissier M C, Mynett A, et al. The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell, 2005, 8: 179–192 1:CAS:528:DC%2BD2MXhsFOiu7w%3D, 10.1016/j.devcel.2004.12.010, 15691760

    Article  PubMed  CAS  Google Scholar 

  17. Sauka-Spengler T, Bronner-Fraser M. Development and evolution of the migratory neural crest: a gene regulatory perspective. Curr Opin Genet Dev, 2006, 16: 360–366 1:CAS:528:DC%2BD28XmslyqsLc%3D, 10.1016/j.gde.2006.06.006, 16793256

    Article  PubMed  CAS  Google Scholar 

  18. Steventon B, Carmona-Fontaine C, Mayor R. Genetic network during neural crest induction: from cell specification to cell survival. Semin Cell Dev Biol, 2005, 16: 647–654 1:CAS:528:DC%2BD2MXhtFKnu7jN, 10.1016/j.semcdb.2005.06.001, 16084743

    Article  PubMed  CAS  Google Scholar 

  19. Yu J, Vodyanik M A, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318: 1917–1920 1:CAS:528:DC%2BD2sXhsVGjsLbN, 10.1126/science.1151526, 18029452

    Article  PubMed  CAS  Google Scholar 

  20. Aquino J B, Hjerling-Leffler J, Koltzenburg M, et al. In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Exp Neurol, 2006, 198: 438–449 1:CAS:528:DC%2BD28Xjs1ajtLs%3D, 10.1016/j.expneurol.2005.12.015, 16442526

    Article  PubMed  CAS  Google Scholar 

  21. Britsch S, Goerich D E, Riethmacher D, et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev, 2001, 15: 66–78 1:CAS:528:DC%2BD3MXhvVKhu7w%3D, 10.1101/gad.186601, 11156606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Kim J, Lo L, Dormand E, et al. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron, 2003, 38: 17–31 1:CAS:528:DC%2BD3sXjt1Gmsbo%3D, 10.1016/S0896-6273(03)00163-6, 12691661

    Article  PubMed  CAS  Google Scholar 

  23. McKeown S J, Lee V M, Bronner-Fraser M, et al. Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev Dyn, 2005, 233: 430–444 10.1002/dvdy.20341, 15768395

    Article  PubMed  Google Scholar 

  24. Paratore C, Goerich D E, Suter U, et al. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development, 2001, 128: 3949–3961 1:CAS:528:DC%2BD3MXotFGksbg%3D, 11641219

    PubMed  CAS  Google Scholar 

  25. Cuevas P, Carceller F, Dujovny M, et al. Peripheral nerve regeneration by bone marrow stromal cells. Neurol Res, 2002, 24: 634–638 10.1179/016164102101200564, 12392196

    Article  PubMed  Google Scholar 

  26. Crane J F, Trainor P A. Neural crest stem and progenitor cells. Annu Rev Cell Dev Biol, 2006, 22: 267–286 1:CAS:528:DC%2BD28Xht1yjs7vE, 10.1146/annurev.cellbio.22.010305.103814, 16803431

    Article  PubMed  CAS  Google Scholar 

  27. Sommer L. Growth factors regulating neural crest cell fate decisions. Adv Exp Med Biol, 2006, 589: 197–205 1:CAS:528:DC%2BC3cXjslamsLo%3D, 10.1007/978-0-387-46954-6_12, 17076283

    Article  PubMed  CAS  Google Scholar 

  28. Haastert K, Lipokatic E, Fischer M, et al. Differentially promoted peripheral nerve regeneration by grafted Schwann cells over-expressing different FGF-2 isoforms. Neurobiol Dis, 2006, 21: 138–153 1:CAS:528:DC%2BD2MXhtlCkt7nF, 10.1016/j.nbd.2005.06.020, 16122933

    Article  PubMed  CAS  Google Scholar 

  29. Lindsay R M. Role of neurotrophins and trk receptors in the development and maintenance of sensory neurons: an overview. Philos Trans R Soc Lond B Biol Sci, 1996, 351: 365–373 1:CAS:528:DyaK28XjtVGju7c%3D, 10.1098/rstb.1996.0030, 8730773

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoSong Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., Hu, N., Liu, J. et al. Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia. Sci. China Life Sci. 53, 1057–1064 (2010). https://doi.org/10.1007/s11427-010-4053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4053-x

Keywords

Navigation