Skip to main content

Advertisement

Log in

Spatiotemporal expression of Pax genes in amphioxus: Insights into Pax-related organogenesis and evolution

  • Research Papers
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The expression of four AmphiPax genes in 16 developmental stages and different organs in amphioxus (Branchiostoma belcheri) was investigated, finding those genes expressed throughout amphioxus life with temporal-specific (especially during embryogenesis and metamorphosis) and spatial-specific patterns. This study suggests that duplicated Pax genes in vertebrates might maintain most of their ancestral functions and also expand their expression patterns after the divergence of protochordates and vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Holland L Z, Laudetb V, Schubert M. The chordate amphioxus: an emerging model organism for developmental biology. Cell Mol Life Sci, 2004, 61: 2290–2308, 1:CAS:528:DC%2BD2cXhtVWlu7nM, 10.1007/s00018-004-4075-2, 15378201

    Article  CAS  Google Scholar 

  2. Zhang Q J, Sun Y, Zhong J, et al. Continuous culture of two lancelets and production of the second filial generations in the laboratory. J Exp Zool (Mol Dev Evol), 2007, 308B: 464–472, 10.1002/jez.b.21172

    Article  Google Scholar 

  3. Dehal P, Boore J L. Two rounds of whole genome duplication in the ancestral vertebrate. Plos Biology, 2005, 3: 1700–1708, 1:CAS:528:DC%2BD2MXhtFeitrrI, 10.1371/journal.pbio.0030314

    Article  CAS  Google Scholar 

  4. Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization. Genetics, 2000, 154: 459–473, 1:CAS:528:DC%2BD3cXms1KhsA%3D%3D, 10629003

    CAS  Google Scholar 

  5. Miller D J, Hayward D C, Reece-Hoyes J S, et al. Pax gene diversity in the basal cnidarian Acropora millepora (Cnidaria, Anthozoa): Implications for the evolution of the Pax gene family. Proc Natl Acad Sci USA, 2000, 97: 4475–4480, 1:CAS:528:DC%2BD3cXivFKjsLs%3D, 10.1073/pnas.97.9.4475, 10781047

    Article  CAS  Google Scholar 

  6. Mazet F, Hutt J A, Millard J, et al. Pax gene expression in the developing central nervous system of Ciona intestinalis. Gene Expr Patterns, 2003, 3: 743–745, 1:CAS:528:DC%2BD3sXpt1egsrk%3D, 10.1016/S1567-133X(03)00137-6, 14643682

    Article  CAS  Google Scholar 

  7. Eccles M R, He S J, Legge M, et al. Pax genes in development and disease: the role of Pax2 in urogenital tract development. Int J Dev Biol, 2002, 46: 535–544, 1:CAS:528:DC%2BD38XnslegtrY%3D, 12141441

    CAS  Google Scholar 

  8. Chi N, Epstein J. Getting your Pax straight: Pax proteins in development and disease. Trends Genet, 2002, 18: 41–47, 1:CAS:528:DC%2BD3MXpt1agsrs%3D, 10.1016/S0168-9525(01)02594-X, 11750700

    Article  CAS  Google Scholar 

  9. Lang D, Powell S K, Plummer R S, et al. Pax genes: Roles in development, pathophysiology, and cancer. Biochem Pharmacol, 2007, 73: 1–14, 1:CAS:528:DC%2BD28Xht12rsbbP, 10.1016/j.bcp.2006.06.024, 16904651

    Article  CAS  Google Scholar 

  10. Holland N D, Holland L Z, Kozmik Z. An amphioxus Pax gene, AmphiPax-1, expressed in embryonic endoderm, but not mesoderm: implications for evolution of class I paired box genes. Mol Biol Biotech, 1995, 4: 206–214, 1:CAS:528:DyaK2MXnvVOrsr0%3D

    Article  CAS  Google Scholar 

  11. Kozmik Z, Holland N D, Kalusova A, et al. Characterization of an amphioxus paired box gene AmphiPax2/5/8: Developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development, 1999, 126: 1295–1304, 1:CAS:528:DyaK1MXisFWmsbo%3D, 10021347

    CAS  Google Scholar 

  12. Holland L Z, Schubert M, Kozmik Z, et al. AmphiPax3/7, an amphioxus paired box gene: insights into chordate myogenesis, neurogenesis, and the possible evolutionary precursor of definitive vertebrate neural crest. Evol Dev, 1999, 1: 153–165, 1:STN:280:DC%2BD3M3lvFajtQ%3D%3D, 10.1046/j.1525-142x.1999.99019.x, 11324100

    Article  CAS  Google Scholar 

  13. Glardon S, Holland L Z, Gehring W J, et al. Isolation and developmental expression of the amphioxus Pax-6 gene (Amphi-Pax-6): Insights into eye and photoreceptor evolution. Development, 1998, 125: 2701–2718, 1:CAS:528:DyaK1cXlsV2mtbg%3D, 9636084

    CAS  Google Scholar 

  14. Kozmik Z, Holland N D, Kreslova J, et al. Pax-Six-Eya-Dach network during amphioxus development: Conservation in vitro but context-specificity in vivo. Dev Biol, 2007, 306: 143–159, 1:CAS:528:DC%2BD2sXmvF2nsb4%3D, 10.1016/j.ydbio.2007.03.009, 17477914

    Article  CAS  Google Scholar 

  15. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform, 2004, 5: 150–163, 1:CAS:528:DC%2BD2cXntFGqu7s%3D, 10.1093/bib/5.2.150, 15260895

    Article  CAS  Google Scholar 

  16. Breitling R, Gerber J K. Origin of the paired domain. Dev Genes Evol, 2000, 210: 644–650, 1:CAS:528:DC%2BD3cXotVSktL0%3D, 10.1007/s004270000106, 11151303

    Article  CAS  Google Scholar 

  17. Xu Q S, Ma F, Wang Y Q. Morphological and 12S rRNA gene comparison of two Branchiostoma species in Xiamen waters. J Exp Zool (Mol Dev Evol), 2005, 304B: 259–267, 1:CAS:528:DC%2BD2MXlvVCrsbw%3D, 10.1002/jez.b.21036

    Article  CAS  Google Scholar 

  18. Zhang Q J, Zhong J, Fang S H, et al. Branchiostoma japonicum and B. belcheri are distinct lancelets (Cephalochordata) in Xiamen waters in China. Zool Sci, 2006, 23: 573–579, 10.2108/zsj.23.573, 16849846

    Article  Google Scholar 

  19. Kenneth J L, Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{ - \Delta \Delta C_T } \) method. Methods, 2001, 25: 402–408, 10.1006/meth.2001.1262

    Article  Google Scholar 

  20. Holland P W H, Holland L Z, Williams N A, et al. An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development, 1992, 116: 653–661, 1:CAS:528:DyaK3sXitVKmur4%3D, 1363226

    CAS  Google Scholar 

  21. Berry C. Development and pathology: the Pax gene. J Pathol, 2002, 197: 279–280, 10.1002/path.1114, 12115871

    Article  Google Scholar 

  22. Stokes M D. Larval locomotion of the lancelet Branchiostoma floridae. J Exp Biol, 1997, 200: 1661–1680, 9319568

    Google Scholar 

  23. Holland L Z, Yu J K. Cephalochordate (amphioxus) embryos; procurement, culture and basic methods. Methods Cell Biol, 2004, 74: 195–215, 10.1016/S0091-679X(04)74009-1, 15575608

    Article  Google Scholar 

  24. Peters H, Neubuser A, Kratochwil K, et al. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev, 1998, 12: 2735–2747, 1:CAS:528:DyaK1cXlvFOjtLg%3D, 10.1101/gad.12.17.2735, 9732271

    Article  CAS  Google Scholar 

  25. Wallin J, Wilting J, Koseki H, et al. The role of Pax-1 in axial skeleton development. Development, 1994, 120: 1109–1121, 1:CAS:528:DyaK2cXltlSktL0%3D, 8026324

    CAS  Google Scholar 

  26. Peters H, Schuster G, Neubuser A, et al. Isolation of the Pax9 cDNA from adult human esophagus. Mamm Genome, 1997, 8: 62–64, 1:CAS:528:DyaK2sXnsVOnsA%3D%3D, 10.1007/s003359900351, 9021154

    Article  CAS  Google Scholar 

  27. Hetzer-Egger C, Schorpp M, Boehm T. Evolutionary conservation of gene structures of the Pax1/9 gene family. Biochim Biophys Acta-Gene Struct Expression, 2000, 1492: 517–521, 1:CAS:528:DC%2BD3cXkslSgsrk%3D, 10.1016/S0167-4781(00)00130-5

    Article  CAS  Google Scholar 

  28. Mansouri A, Chowdhury K, Gruss P. Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet, 1998, 19: 87–90, 1:CAS:528:DyaK1cXislWqu7c%3D, 10.1038/ng0598-87, 9590297

    Article  CAS  Google Scholar 

  29. Hiruta J, Mazet F, Yasui K, et al. Comparative expression analysis of transcription factor genes in the endostyle of invertebrate chordates. Dev Dyn, 2005, 233: 1031–1037, 1:CAS:528:DC%2BD2MXmtFKgsbg%3D, 10.1002/dvdy.20401, 15861404

    Article  CAS  Google Scholar 

  30. Fickenscher H R, Chalepakis G, Gruss P. Murine Pax-2 protein is a sequence-specific trans-activator with expression in the genital system. DNA Cell Biol, 1993, 12: 381–391, 1:CAS:528:DyaK3sXltFSmsrY%3D, 10.1089/dna.1993.12.381, 8517925

    Article  CAS  Google Scholar 

  31. Oefelein M, Grapey D, Schaeffer T, et al. Pax-2: a developmental gene constitutively expressed in the mouse epididymis and ductus deferens. J Urol, 1996, 156: 1204–1207, 1:STN:280:DyaK28zitFSjug%3D%3D, 10.1016/S0022-5347(01)65751-3, 8709347

    Article  CAS  Google Scholar 

  32. Adams B, Dörfler P, Aguzzi A, et al. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev, 1992, 6: 1589–1607, 1:CAS:528:DyaK3sXksVags7g%3D, 10.1101/gad.6.9.1589, 1516825

    Article  CAS  Google Scholar 

  33. Pfeffer P L, Gerster T, Lun K, et al. Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development, 1998, 125: 3063–3074, 1:CAS:528:DyaK1cXmtVaht7c%3D, 9671580

    CAS  Google Scholar 

  34. Goulding M, Lumsden A, Paquette A J. Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development, 1994, 120: 957–971, 1:CAS:528:DyaK2cXltlSgtro%3D, 7600971

    CAS  Google Scholar 

  35. Williams B A, Ordahl C P. Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development, 1994, 120: 785–796, 1:CAS:528:DyaK2cXltVCmsbc%3D, 7600957

    CAS  Google Scholar 

  36. Seale P, Sabourin L A, Girgis-Gabardo A, et al. Pax7 is required for the specification of myogenic satellite cells. Cell, 2000, 102: 777–786, 1:CAS:528:DC%2BD3cXmvFShtrs%3D, 10.1016/S0092-8674(00)00066-0, 11030621

    Article  CAS  Google Scholar 

  37. Lang D, Chen F, Milewski R, et al. Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest, 2000, 106: 963–971, 1:CAS:528:DC%2BD3cXnsVeisb0%3D, 10.1172/JCI10828, 11032856

    Article  CAS  Google Scholar 

  38. Mansouri A, Stoykova A, Torres M, et al. Dysgenesis of cephalic neural crest derivatives in Pax7−/− mutant mice. Development, 1996, 122: 831–838, 1:CAS:528:DyaK28XhvVOrtb4%3D, 8631261

    CAS  Google Scholar 

  39. Lee C S, Kaestner K H. Development of gut endocrine cells. Best Pract Res Clin Endoc Metab, 2004, 4: 453–462, 10.1016/j.beem.2004.08.008

    Article  Google Scholar 

  40. Jarikjia Z H, Vanamalaa S, Beckd C W, et al. Differential ability of Ptf1a and Ptf1a-VP16 to convert stomach, duodenum and liver to pancreas. Dev Biol, 2007, 304: 786–799, 10.1016/j.ydbio.2007.01.027

    Article  Google Scholar 

  41. Ogasawara M, Wada H, Peters H, et al. Developmental expression of Pax1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. Development, 1999, 126: 2539–2550, 1:CAS:528:DyaK1MXktFWrurs%3D, 10226012

    CAS  Google Scholar 

  42. Wada H, Holland P W H, Sato S, et al. Neural tube is partially dorsalized by overexpression of HrPax-37: The ascidian homologue of Pax-3 and Pax-7. Dev Biol, 1997, 187: 240–252, 1:CAS:528:DyaK2sXltVOqsb0%3D, 10.1006/dbio.1997.8626, 9242421

    Article  CAS  Google Scholar 

  43. Glardon S, Callaerts P, Halder G, et al. Conservation of Pax-6 in a lower chordate, the ascidian Phallusia mammillata. Development, 1997, 124: 817–825, 1:CAS:528:DyaK2sXhvVyks7w%3D, 9043063

    CAS  Google Scholar 

  44. Delsuc F, Brinkmann H, Chourrout D, et al. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 2006, 439: 965–968, 1:CAS:528:DC%2BD28Xhs1KjsLY%3D, 10.1038/nature04336, 16495997

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiQuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Zhang, Q., Wang, W. et al. Spatiotemporal expression of Pax genes in amphioxus: Insights into Pax-related organogenesis and evolution. Sci. China Life Sci. 53, 1031–1040 (2010). https://doi.org/10.1007/s11427-010-4040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4040-2

Keywords