Advertisement

Science China Life Sciences

, Volume 53, Issue 4, pp 409–415 | Cite as

Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio

  • JianFang Gui
  • Li Zhou
Special Topic

Abstract

A unisexual species is generally associated with polyploidy, and reproduced by a unisexual reproduction mode, such as gynogenesis, hybridogenesis or parthenogenesis. Compared with other unisexual and polyploid species, gibel carp (Carassius auratus gibelio) has a higher ploidy level of hexaploid. It has undergone several successive rounds of genome polyploidy, and experienced an additional, more recent genome duplication event. More significantly, the dual reproduction modes, including gynogenesis and sexual reproduction, have been demonstrated to coexist in the polyploid gibel carp. This article reviews the genetic basis concerning polyploidy origin, clonal diversity and dual reproduction modes, and outlines the progress in new variety breeding and gene identification involved in the reproduction and early development. The data suggests that gibel carp are under an evolutionary trajectory of diploidization. As a novel evolutionary developmental (Evo-Devo) biology model, this work highlights future perspectives about the functional divergence of duplicated genes and the sexual origin of vertebrate animals.

Keywords

Carassius auratus gibelio polyploidy clonal diversity gynogenesis sexual reproduction dual reproduction modes breeding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vrijenhoek R C. Unisexual fish: Model systems for studying ecology and evolution. Annu Rev Ecol Syst, 1994, 25:71–96 10.1146/annurev.es.25.110194.000443CrossRefGoogle Scholar
  2. 2.
    Schlupp I. The evolutionary ecology of gynogenesis. Annu Rev Ecol Evol Syst, 2005, 36:399–417 10.1146/annurev.ecolsys.36.102003.152629CrossRefGoogle Scholar
  3. 3.
    Gui J F. Evolutionary genetics of unisexual vertebrates. Nat J (Shanghai), 1989, 12:116–121Google Scholar
  4. 4.
    Hubbs C L, Hubbs L C. Apparent parthenogenesis in nature, in a form of fish of hybrid origin. Science, 1932, 76:628–630 10.1126/science.76.1983.628, 17730035, 1:STN:280:DC%2BC3cvmsFOqsQ%3D%3DPubMedCrossRefGoogle Scholar
  5. 5.
    Vrijenhoek R C, Dawley R M, Cole C J, et al. A list of known unisexual vertebrates. Evolution and ecology of unisexual vertebrates. In: Dawley R M, Bogard J P, eds. Albany: New York State Museum, 1989. 19–23Google Scholar
  6. 6.
    Crow J F, Kimura M. Evolution in sexual and asexual populations. Am Nat, 1965, 99:439–450 10.1086/282389CrossRefGoogle Scholar
  7. 7.
    Schartl M, Nanda I, Schlupp I, et al. Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature, 1995, 373:68–71 10.1038/373068a0CrossRefGoogle Scholar
  8. 8.
    Kearney M. Hybridization, glaciation and geographical parthenogenesis. Trends Ecol Evol, 2005, 20:495–502 10.1016/j.tree.2005.06.005, 16701426PubMedCrossRefGoogle Scholar
  9. 9.
    Lampert K P, Schartl M. The origin and evolution of a unisexual hybrid: Poecilia formosa. Philos Trans R Soc Lond B Biol Sci, 2008, 363:2901–2909 10.1098/rstb.2008.0040, 18508756, 1:STN:280:DC%2BD1crosVyntQ%3D%3DPubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Muller H J. The relation of recombination to mutational advance. Mutat Res, 1964, 1:2–9CrossRefGoogle Scholar
  11. 11.
    Crow J F. The odds of losing at genetic roulette. Nature, 1999. 397:293–294 10.1038/16789, 9950420, 1:CAS:528:DyaK1MXhtVOmsLw%3DPubMedCrossRefGoogle Scholar
  12. 12.
    Spolsky C M, Phillips C A, Uzzell T. Antiquity of clonal salamander lineages revealed by mitochondrial DNA. Nature, 1992, 356:706–708 10.1038/356706a0, 1570013, 1:CAS:528:DyaK38XisFamtbw%3DPubMedCrossRefGoogle Scholar
  13. 13.
    Hedges S B, Bogard J P, Maxson L R. Ancestry of unisexual salamanders. Nature, 1992, 356:708–710 10.1038/356708a0, 1570014, 1:CAS:528:DyaK38XisFamtb0%3DPubMedCrossRefGoogle Scholar
  14. 14.
    Bogart J P, Bi K, Fu J, et al. Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome, 2007, 50:119–136 10.1139/G06-152, 17546077, 1:CAS:528:DC%2BD2sXntlOgtbg%3DPubMedCrossRefGoogle Scholar
  15. 15.
    Normark B B, Judson O P, Moran N A. Genomic signatures of ancient asexual lineages. Biol J Linn Soc, 2003, 79:69–84 10.1046/j.1095-8312.2003.00182.xCrossRefGoogle Scholar
  16. 16.
    Moritz C, Heideman A. The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae): Reciprocal origins and diverse mitochondrial DNA in western populations. Syst Biol, 1993, 42:293–306CrossRefGoogle Scholar
  17. 17.
    Kearney M, Blacket M J, Strasburg J L, et al. Waves of parthenogenesis in the desert: Evidence of the parallel loss of sex in a grasshopper and a gecko from Australia. Mol Ecol, 2006, 15:1743–1748 10.1111/j.1365-294X.2006.02898.x, 16689894, 1:CAS:528:DC%2BD28XmtlGrs7o%3DPubMedCrossRefGoogle Scholar
  18. 18.
    Quattro J M, Avise J C, Vrijenhoek R C. An ancient clinal lineage in the fish genus Poeciliopsis (Atheriniformes: Poeciliidae). Proc Natl Acad Sci USA, 1992, 89:348–352 10.1073/pnas.89.1.348, 11607248, 1:STN:280:DC%2BD3MrmtFahtQ%3D%3DPubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Schartl M, Wilde B, Schlupp I, et al. Evolutionary origin of a parthenoform, the Amazon molly Poecilia formosa, on the basis of a molecular genealogy. Evolution, 1995, 49:827–835 10.2307/2410406, 1:CAS:528:DyaK28XktlyisA%3D%3DCrossRefGoogle Scholar
  20. 20.
    Meyer M M, Salzburger W, Schartl M. Hybrid origin of a swordtail species (Teleostei: Xiphophorus clemenciae) driven by sexual selection. Mol Ecol, 2006, 15:721–730 10.1111/j.1365-294X.2006.02810.x, 16499697, 1:CAS:528:DC%2BD28XjsVGnsb8%3DPubMedCrossRefGoogle Scholar
  21. 21.
    Angers B, Schlosser I J. The origin of Phoxinus eos-neogaeus unisexual hybrids. Mol Ecol, 2007, 16:4562–4571 10.1111/j.1365-294X.2007.03511.x, 17892466, 1:CAS:528:DC%2BD2sXhsVSitrrLPubMedCrossRefGoogle Scholar
  22. 22.
    Maynard Smith J. Age and the unisexual lineage. Nature, 1992, 356:661–662 10.1038/356661a0CrossRefGoogle Scholar
  23. 23.
    Cherfas N B. Gynogenesis in fishes. In: Kirpichnikov V S, ed. Genetic Bases of Fish Selection. Berlin: Springer-Verlag, 1981. 255–273Google Scholar
  24. 24.
    Jiang Y, Liang S C, Chen B D, et al. Biological effect of heterologous sperm on gynogenetic offspring in Carassius auratus gibelio. Acta Hydrobiol Sin, 1983, 8:1–13Google Scholar
  25. 25.
    Zhou L, Wang Y, Gui J F. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. J Mol Evol, 2000, 51:498–506 11080373, 1:CAS:528:DC%2BD3MXptFKmPubMedGoogle Scholar
  26. 26.
    Ohno S, Muramoto J, Christian L. Diploid-tetraploid relationship among old-world members of fish family cyprinidae. Chromosoma, 1967, 23:1–9 10.1007/BF00293307CrossRefGoogle Scholar
  27. 27.
    Zhou L, Gui J F. Karyotypic diversity in polyploid gibel carp, Carassius auratus gibelio Bloch. Genetica, 2002, 115:223–232 10.1023/A:1020102409270, 12403177, 1:CAS:528:DC%2BD38XmvVKiu7s%3DPubMedCrossRefGoogle Scholar
  28. 28.
    Yi M S, Li Y Q, Liu J D, et al. Molecular cytogenetic detection of paternal chromosome fragments in allogynogenetic gibel carp, Carassius auratus gibelio Bloch. Chromosome Res, 2003, 11: 665–671 10.1023/A:1025985625706, 14606628, 1:CAS:528:DC%2BD3sXns1Cmsrw%3DPubMedCrossRefGoogle Scholar
  29. 29.
    Zhu H P, Ma D M, Gui J F. Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosome Res, 2006, 14:767–776 10.1007/s10577-006-1083-0, 17115331, 1:CAS:528:DC%2BD28Xht1Wqu7%2FMPubMedCrossRefGoogle Scholar
  30. 30.
    Kobayashi H, Nakano K, Nakamura M. On the hybrids, 4n ginbuna (C. auratus langsdorfii) × kinbuna (C. auratus subsp.) and their chromosome. Bull Japan Soc Sci Fish, 1977, 43:31–37CrossRefGoogle Scholar
  31. 31.
    Gui J F, Liang S C, Zhu L F, et al. Discovery of multiple tetraploids in artificially propagated populations of allogynogenetic silver crucian carp and their breeding potentialities. Chinese Sci Bull, 1993, 38:327–331Google Scholar
  32. 32.
    Quattro J M, Avise J C, Vrijenhoek R C. Mode of origin and sources of genotypic diversity in triploid gynogenetic fish clones (Poeciliopsis: Poeciliidae). Genetics, 1992, 130:621–628 1348041, 1:STN:280:DyaK383gtFKntQ%3D%3DPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhu H P, Gui J F. Identification of genome organization in the un usual allotetraploid form of Carassius auratus gibelio. Aquaculture, 2007, 265:109–117 10.1016/j.aquaculture.2006.10.026, 1:CAS:528:DC%2BD2sXjvFOns74%3DCrossRefGoogle Scholar
  34. 34.
    Hanfling H, Bolton P, Harley M, et al. A molecular approach to detect hybridisation between crusian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio). Freshw Biol, 2005, 50:403–417 10.1111/j.1365-2427.2004.01330.xCrossRefGoogle Scholar
  35. 35.
    Toth B, Varkonyi E, Hidast A, et al. Genetic analysis of offspring from intra- and interspecific crosses of Carassius auratus gibelio by chromosome and RAPD analysis. J Fish Biol, 2005, 66:784–797 10.1111/j.0022-1112.2005.00644.x, 1:CAS:528:DC%2BD2MXjs1ensLk%3DCrossRefGoogle Scholar
  36. 36.
    Liousia V, Liasko R, Koutrakis E, et al. Variation in clones of the sperm-dependent parthenogenetic Carassius gibelio (Bloch) in Lake Pamvotis (north-west Greece). J Fish Biol, 2008, 72:310–314 10.1111/j.1095-8649.2007.01712.xCrossRefGoogle Scholar
  37. 37.
    Vetešní kL, Papoušek I, Halačka K, et al. Morphometric and genetic analysis of Carassius auratus complex from an artificial wetland in Morava River floodplain, Czech Republic. Fish Sci, 2007, 73: 817–822 10.1111/j.1444-2906.2007.01401.x, 1:CAS:528:DC%2BD2sXhtVaisbrMCrossRefGoogle Scholar
  38. 38.
    Kalous L, Šlechtová V Jr, Bohlen J, et al. First European record of Carassius langsdorfii from the Elbe Basin. J Fish Biol, 2007, 70:132–138 10.1111/j.1095-8649.2006.01290.x, 1:CAS:528:DC%2BD2sXksVOlu78%3DCrossRefGoogle Scholar
  39. 39.
    Sakai K, Iguchi K, Yamazaki Y, et al. Morphological and mtDNA sequence studies on three crucian carps (Carassius: Cyprinidae) including a new stock from the Ob River system, Kazakhstan. J Fish Biol, 2009, 74:1756–1773 10.1111/j.1095-8649.2009.02203.x, 1:CAS:528:DC%2BD1MXotVequ7Y%3D, 20735669PubMedCrossRefGoogle Scholar
  40. 40.
    Zhu L F, Jiang Y G. A comparative study of the biological characters of gynogenetic clones of silver crucian carp (Carassius auratus gibelio). Acta Hydrobiol Sin, 1993, 17:112–120Google Scholar
  41. 41.
    Zhu L F, Jiang Y G. Intraspecific genetic markers of crucian carp (Carassius autratus gibelio) and their application to selective breeding. Acta Hydrobiol Sin, 1987, 11:105–111Google Scholar
  42. 42.
    Zhu L F. Genetic monitoring of different gynogenetic clones of crucian carp (Carassius auratus gibelio) by tissue-transplantation. Acta Hydrobiol Sin, 1990, 14:16–21Google Scholar
  43. 43.
    Yang L, Yang S T, Wei X H, et al. Genetic diversity among different clones of the gynogenetic silver crucian carp, Carassius auratus gibelio, revealed by transferrin and isozyme markers. Biochem Genet, 2001, 39:214–225 10.1023/A:1010297426390CrossRefGoogle Scholar
  44. 44.
    Zhou L, Wang Y, Gui J F. Analysis of genetic heterogeneity among five gynogenetic clones of silver crucian carp, Carassius auratus gibelio Bloch, based on detection of RAPD molecular markers. Cytogenet Cell Genet, 2000, 88:129–133 10.1159/000015506Google Scholar
  45. 45.
    Zhou L, Wang Y, Gui J F. Molecular analysis of silver crucian carp (Carassius auratus gibelio Bloch) clones by SCAR markers. Aquaculture, 2001, 201:219–228 10.1016/S0044-8486(01)00603-2, 1:CAS:528:DC%2BD3MXntVWkt7s%3DCrossRefGoogle Scholar
  46. 46.
    Guo W, Gui J F. Microsatellite marker isolation and cultured strain identification in Carassius auratus gibelio. Aquac Int, 2008, 16:497–510 10.1007/s10499-007-9161-7, 1:CAS:528:DC%2BD1cXht1yrur3ICrossRefGoogle Scholar
  47. 47.
    Yang L, Gui J F. Positive selection on multiple antique allelic lineages of transferrin in the polyploid Carassius auratus. Mol Biol Evol, 2004, 21:1264–1277 10.1093/molbev/msh121, 15014154, 1:CAS:528:DC%2BD2cXltlKls7w%3DPubMedCrossRefGoogle Scholar
  48. 48.
    Yang L, Zhou L, Gui J F. Molecular basis of transferrin polymorphism in goldfish (Carassius auratus). Genetica, 2004, 121:303–313 10.1023/B:GENE.0000039855.55445.67, 15521429, 1:CAS:528:DC%2BD2cXntFCntbc%3DPubMedCrossRefGoogle Scholar
  49. 49.
    Li F B, Gui J F. Clonal diversity and genealogical relationships of gibel carp in four hatcheries. Anim Genet, 2008, 39:28–33 10.1111/j.1365-2052.2007.01671.x, 18076744, 1:CAS:528:DC%2BD1cXjtFekur8%3DPubMedCrossRefGoogle Scholar
  50. 50.
    Gui J F. Genetic basis and artificial control of sexuality and reproduction in fish. Beijing: Science Press, 2007.Google Scholar
  51. 51.
    Ryskov A P. Genetically unstable microsatellite-containing loci and genome diversity in clonally reproduced unisexual vertebrates. Int Rev Cell Mol Biol, 2008, 270:319–349 10.1016/S1937-6448(08)01407-X, 19081539, 1:CAS:528:DC%2BD1MXhvV2ltr4%3DPubMedCrossRefGoogle Scholar
  52. 52.
    Xie J, Wen J J, Chen B, et al. Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps. Gene, 2001, 271:109–116 10.1016/S0378-1119(01)00491-7, 11410372, 1:CAS:528:DC%2BD3MXkt1Kksrk%3DPubMedCrossRefGoogle Scholar
  53. 53.
    Xie J, Wen J J, Yang Z A, et al. Cyclin A2 is differentially expressed during oocyte maturation between gynogenetic silver crucian carp and gonochoristic color crucian carp. J Exp Zool, 2003, 295:1–16 10.1002/jez.a.10209, 1:CAS:528:DC%2BD3sXhtVyns7w%3DGoogle Scholar
  54. 54.
    Dong C H, Yang S T, Yang Z A, et al. A C-type lectin associated and translocated with cortical granules during oocyte maturation and egg fertilization in fish. Dev Biol, 2004, 265:341–354 10.1016/j.ydbio.2003.08.028, 14732397, 1:CAS:528:DC%2BD2cXltF2ltQ%3D%3DPubMedCrossRefGoogle Scholar
  55. 55.
    Chen B, Gui J F. Identification of a novel C1q family member in color crucian carp (Carassius auratus) ovary. Comp Biochem Phys B, 2004, 138:285–293 10.1016/j.cbpc.2004.04.014, 1:CAS:528:DC%2BD2cXlslyrsrw%3DCrossRefGoogle Scholar
  56. 56.
    Mei J, Chen B, Yue H M, et al. Identification of a C1q family member associated with cortical granules and follicular cell apoptosis in Carassius auratus gibelio. Mol Cell Endocrinol, 2008, 289:67–76 10.1016/j.mce.2008.02.016, 18407406, 1:CAS:528:DC%2BD1cXnsFKrtL8%3DPubMedCrossRefGoogle Scholar
  57. 57.
    Richards J S, Liu Z, Shimada M. Immune-like mechanisms in ovulation. Trends Endocrinol Metab, 2008, 19:191–196 10.1016/j.tem.2008.03.001, 18407514, 1:CAS:528:DC%2BD1cXoslWmsL4%3DPubMedCrossRefGoogle Scholar
  58. 58.
    Mei J, Zhang Q Y, Li Z, et al. C1q-like inhibits p53-mediated apoptosis and controls normal hematopoiesis during zebrafish embryogenesis. Dev Biol, 2008, 319:273–284 10.1016/j.ydbio.2008.04.022, 18514183, 1:CAS:528:DC%2BD1cXovVGitb4%3DPubMedCrossRefGoogle Scholar
  59. 59.
    Wu N, Yue H M, Chen B, et al. Histone H2A has a novel variant in fish oocytes. Biol Reprod, 2009, 81:275–283 10.1095/biolreprod.108.074955, 19386992, 1:CAS:528:DC%2BD1MXptVaitb4%3DPubMedCrossRefGoogle Scholar
  60. 60.
    Wu N, Li C J, Gui J F. Molecular characterization and functional commonality of nucleophosmin/nucleoplasmin in two cyprinid fish. Biochem Genet, 2009, 47:749–762 10.1007/s10528-009-9274-y, 1:CAS:528:DC%2BD1MXhsVamtLfPPubMedCrossRefGoogle Scholar
  61. 61.
    Xu H Y, Gui J F, Hong Y H. Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. Dev Dyn, 2005, 233:872–882 10.1002/dvdy.20410, 15880437, 1:CAS:528:DC%2BD2MXmtFKgsL8%3DPubMedCrossRefGoogle Scholar
  62. 62.
    Li M Y, Hong N, Xu H Y, et al. Medaka vasa is required for migration but not survival of primordial germ cells. Mech Dev, 2009, 126:366–381 10.1016/j.mod.2009.02.004, 19249358, 1:CAS:528:DC%2BD1MXlslWqu7o%3DPubMedCrossRefGoogle Scholar
  63. 63.
    Peng J X, Xie J L, Zhou L, et al. Evolutionary conservation of Dazl genomic organization and its continuous and dynamic distribution throughout germline development in gynogenetic gibel carp. J Exp Zool Part B, 2009, 312B:855–871 10.1002/jez.b.21301, 1:CAS:528:DC%2BD1MXhsFGmsLbLCrossRefGoogle Scholar
  64. 64.
    Oh B, Hwang S Y, Solter D, et al. Spindlin, a major maternal transcript expressed in the mouse during the transition from oocyte to embryo. Development, 1997, 124:493–503 9053325, 1:CAS:528:DyaK2sXhvVWmsbk%3DPubMedGoogle Scholar
  65. 65.
    Oh B, Hwang S, McLaughlin J, et al. Timely translation during the mouse oocyte-to-embryo transition. Development, 2000, 127: 3795–3803 10934024, 1:CAS:528:DC%2BD3cXmvFSmtLw%3DPubMedGoogle Scholar
  66. 66.
    Wang X L, Sun M, Mei J, et al. Identification of a Spindlin homolog in gibel carp (Carassius auratus gibelio). Comp Biochem Physiol B Biochem Mol Biol, 2005, 141:159–167 10.1016/j.cbpc.2005.02.011, 15939319, 1:CAS:528:DC%2BD2MXltVaqsLo%3DPubMedCrossRefGoogle Scholar
  67. 67.
    Otto S P, Whitton J. Polyploid incidence and evolution. Annu Rev Gene, 2000, 34:401–437 10.1146/annurev.genet.34.1.401, 1:CAS:528:DC%2BD3MXlvFOjsg%3D%3DCrossRefGoogle Scholar
  68. 68.
    Venkatesh B. Evolution and diversity of fish genomes. Curr Opin Genet Dev, 2003, 13:588–592 10.1016/j.gde.2003.09.001, 14638319, 1:CAS:528:DC%2BD3sXpt1SnsLg%3DPubMedCrossRefGoogle Scholar
  69. 69.
    Allendorf F W, Thorgaard G H. Tetraploidy and the evolution of Salmonid fishes. In: Turner B J, ed. Evolutionary Genetics of Fishes. New York: Plenum Press, 1984. 1–53CrossRefGoogle Scholar
  70. 70.
    Ferris S D. Tetraploidy and the evolution of the catostomid fishes. In: Turner B J, ed. Evolutionary Genetics of Fishes. New York: Plenum Press, 1984. 55–93CrossRefGoogle Scholar
  71. 71.
    Soltis D E, Soltis P S. Polyploidy: Recurrent formation and genome evolution. TREE, 1999, 14:348–352 10441308PubMedGoogle Scholar
  72. 72.
    Comai L. The advantages and distanvages of being polyploid. Nat Rev Genet, 2005, 6:836–846 10.1038/nrg1711, 16304599, 1:CAS:528:DC%2BD2MXhtFygt7%2FOPubMedCrossRefGoogle Scholar
  73. 73.
    Otto S P. The evolutionary consequences of polyploidy. Cell, 2007, 131:452–462 10.1016/j.cell.2007.10.022, 17981114, 1:CAS:528:DC%2BD2sXhtlWitr%2FJPubMedCrossRefGoogle Scholar
  74. 74.
    Vrijenhoek R C. Polyploid hybrids: Multiple origins of a treefrog species. Curr Biol, 2006, 16:R245–R247 10.1016/j.cub.2006.03.005, 16581499, 1:CAS:528:DC%2BD28XjtFGhsrw%3DPubMedCrossRefGoogle Scholar
  75. 75.
    Postlethwait J, Amores A, Cresko W, et al. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet, 2004, 20:481–490 10.1016/j.tig.2004.08.001, 15363902, 1:CAS:528:DC%2BD2cXnsFGntr8%3DPubMedCrossRefGoogle Scholar
  76. 76.
    Taylor J S, Braasch I, Frickey T, et al. Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res, 2003, 13:382–390 10.1101/gr.640303, 12618368, 1:CAS:528:DC%2BD3sXit1Wgtrc%3DPubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Zhang J. Evolution by gene duplication: an update. Trends Ecol Evol, 2003, 18:292–298 10.1016/S0169-5347(03)00033-8CrossRefGoogle Scholar
  78. 78.
    He X, Zhang J. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics, 2005, 169:1157–1164 10.1534/genetics.104.037051, 15654095PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Conant G C, Wolfe K H. Turning a hobby into a job: How duplicated genes find new functions. Nat Rev Genet, 2008, 9:938–950 10.1038/nrg2482, 19015656, 1:CAS:528:DC%2BD1cXhtlyhtbjLPubMedCrossRefGoogle Scholar
  80. 80.
    Liu S, Li Z, Gui J F. Fish-specific duplicated dmrt2b contributes to a divergent function through Hedgehog pathway and maintains left-right asymmetry establishment function. PLoS One, 2009, 4:e7261 10.1371/journal.pone.0007261, 19789708, 1:CAS:528:DC%2BD1MXht1altLjPPubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Stöck M, Lamatsch D K, Steinlein C, et al. A bisexually reproducing all-triploid vertebrate. Nat Genet, 2002, 30:325–328 10.1038/ng839, 11836500PubMedCrossRefGoogle Scholar
  82. 82.
    Christiansen D G, Reyer H U. From clonal to sexual hybrids: Genetic recombination via triploids in all-hybrid populations of water frogs. Evolution, 2009, 63:1754–1768 10.1111/j.1558-5646.2009.00673.x, 19245393, 1:CAS:528:DC%2BD1MXptFCrurs%3DPubMedCrossRefGoogle Scholar
  83. 83.
    Wang D, Mao H L, Peng J X, et al. Discovery of a male-biased mutant family and identification of a male-specific SCAR marker in gynogenetic gibel carp Carassius auratus gibelio. Prog Nat Sci, 2009, 19:1537–1544 10.1016/j.pnsc.2009.04.008, 1:CAS:528:DC%2BC3cXhtFCjsrw%3DCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina

Personalised recommendations