Skip to main content
Log in

Integration mechanisms of transgenes and population fitness of GH transgenic fish

  • Special Topic
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

It has been more than 20 years since the first batch of transgenic fish was produced. Five stable germ-line transmitted growth hormone (GH) transgenic fish lines have been generated. This paper reviews the mechanisms of integration and gene targeting of the transgene, as well as the viability, reproduction and transgenic approaches for the reproductive containment of GH-transgenic fish. Further, we propose that it should be necessary to do the following studies, in particularly, of the breeding of transgenic fish: to assess the fitness of transgenic fish in an aqueous environment with a large space and a complex structure; and to develop a controllable on-off strategy of reproduction in transgenic fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu Z, Li G, He L, et al. Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus). J Appl Ichthyol, 1985, 1: 31–34 10.1111/j.1439-0426.1985.tb00408.x, 1:CAS:528:DyaL2MXltFOnsL0%3D

    Article  Google Scholar 

  2. Wang Y, Hu W, Wu G, et al. Genetic analysis of ‘all-fish’ growth hormone gene transferred carp (Cyprinus carpio L.) and its F1 generation. Chinese Sci Bull, 2001, 46: 1174–1177 1:CAS:528:DC%2BD3MXmtVSqsrY%3D

    Google Scholar 

  3. Devlin R H, Biagi C A, Yesaki T Y. Growth, viability and genetic characteristics of GH transgenic Coho salmon strains. Aquaculture, 2004, 236: 607–632 10.1016/j.aquaculture.2004.02.026, 1:CAS:528:DC%2BD2cXktVCitL8%3D

    Article  Google Scholar 

  4. Fletcher G L, Shears M A, Yaskowiak E S, et al. Gene transfer: potential to enhance the genome of Atlantic salmon for aquaculture. Aust J Exp Agric, 2004, 44: 1095–1100 10.1071/EA03223, 1:CAS:528:DC%2BD2cXhtVKrurfL

    Article  Google Scholar 

  5. Nam Y K, Cho Y S, Cho H J, et al. Accelerated growth performance and stable germ-line transmission in androgenetically derived homozygous transgenic mud loach, Misgurnus mizolepis. Aquaculture, 2002, 209: 257–270 10.1016/S0044-8486(01)00730-X

    Article  Google Scholar 

  6. Martínez R, Arenal A, Estrada M P, et al. Mendelian transmission, transgene dosage and growth phenotype in transgenic tilapia (Oreochromis hornorum) showing ectopic expression of homologous growth hormone. Aquaculture, 1999, 173: 271–283 10.1016/S0044-8486(98)00451-7

    Article  Google Scholar 

  7. Rahman M A, Ronyai A, Engidaw B Z, et al. Growth and nutritional trials on transgenic Nile tilapia containing an exogenous fish growth hormone gene. J Fish Biol, 2001, 59: 62–78 10.1111/j.1095-8649.2001.tb02338.x, 1:CAS:528:DC%2BD3MXksF2mtLg%3D

    Article  Google Scholar 

  8. Hu W, Wang Y, Zhu Z. Progress in the evaluation of transgenic fish for possible ecological risk and its containment strategies. Sci China C-Life Sci, 2007, 50: 573–579 10.1007/s11427-007-0089-y, 1:CAS:528:DC%2BD2sXhsVGgtbbN, 17879053

    Article  PubMed  Google Scholar 

  9. Zeng Z Q, Zhu Z Y. The molecular polymorphism of transgenes in F4 generation red carp transfected with pMThGH gene. Chinese Sci Bull, 2000, 45: 1957–1962

    Google Scholar 

  10. Wu B, Sun Y H, Wang Y W, et al. Characterization of transgene integration pattern in F4 hGH-transgenic common carp (Cyprinus carpio). Cell Res, 2005, 15: 447–454 10.1038/sj.cr.7290313, 1:CAS:528:DC%2BD2MXhtFWmt77P, 15987603

    Article  PubMed  Google Scholar 

  11. Dorer D R. Do transgene arrays form heterochromatin in vertebrates? Transgenic Res, 1997, 6: 3–10 10.1023/A:1018460413680, 1:CAS:528:DyaK2sXotFehug%3D%3D, 9032972

    Article  PubMed  Google Scholar 

  12. Martin D I K, Whitelaw E. The vagaries of variegating transgenes. BioEssays, 1996, 18: 919–923 10.1002/bies.950181111, 1:STN:280:DyaK2s%2FptlGjug%3D%3D, 8939070

    Article  PubMed  Google Scholar 

  13. Garrick D, Fiering S, Martin D I, et al. Repeat-induced gene silencing in mammals. Nat Genet, 1998, 18: 56–59 10.1038/ng0198-56, 1:CAS:528:DyaK1cXivFChsQ%3D%3D, 9425901

    Article  PubMed  Google Scholar 

  14. Fan L, Moon J, Crodian J, et al. Homologous recombination in zebrafish ES cells. Transgenic Res, 2006, 15: 21–30 10.1007/s11248-005-3225-0, 1:CAS:528:DC%2BD28XhtlSqtrg%3D, 16475007

    Article  PubMed  Google Scholar 

  15. Chen S, Hong Y, Schartl M. Development of a positive-negative selection procedure for gene targeting in fish cells. Aquaculture, 2002, 214: 67–79 10.1016/S0044-8486(01)00811-0, 1:CAS:528:DC%2BD38XnsF2rs7g%3D

    Article  Google Scholar 

  16. Wu Y, Zhang G, Xiong Q, et al. Integration of double-fluorescence expression vectors into zebrafish genome for the selection of site-directed knockout/knockin. Mar Biotechnol, 2006, 8: 304–311 10.1007/s10126-006-5116-7, 1:CAS:528:DC%2BD28XlsV2lu7s%3D, 16501876

    Article  PubMed  Google Scholar 

  17. Liu W Y, Wang Y, Qin Y, et al. Site-directed gene integration in transgenic zebrafish mediated by Cre recombinase using a combination of mutant Lox sites. Mar Biotechnol, 2007, 9: 420–428 10.1007/s10126-007-9000-x, 1:CAS:528:DC%2BD2sXhtVynurzK, 17503154

    Article  PubMed  Google Scholar 

  18. Doyon Y, McCammon J M, Miller J C, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotech, 2008, 26: 702–708 10.1038/nbt1409, 1:CAS:528:DC%2BD1cXmvVCis7g%3D

    Article  Google Scholar 

  19. Meng X, Noyes M B, Zhu L J, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotech, 2008, 26: 695–701 10.1038/nbt1398, 1:CAS:528:DC%2BD1cXmvVCju7o%3D

    Article  Google Scholar 

  20. Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA, 2000, 97: 11403–11408 10.1073/pnas.97.21.11403, 1:CAS:528:DC%2BD3cXnsF2qsr4%3D, 11027340

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kawakami K, Takeda H, Kawakami N, et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell, 2004, 7: 133–144 10.1016/j.devcel.2004.06.005, 1:CAS:528:DC%2BD2cXntVChsr8%3D, 15239961

    Article  PubMed  Google Scholar 

  22. Urasaki A, Asakawa K, Kawakami K. Efficient transposition of the Tol2 transposable element from a single-copy donor in zebrafish. Proc Natl Acad Sci USA, 2008, 105: 19827–19832 10.1073/pnas.0810380105, 1:CAS:528:DC%2BD1cXhsFCltrvL, 19060204

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lind J, Cresswell W. Determining the fitness consequences of antipredation behavior. Behav Ecol, 2005, 16: 945–956 10.1093/beheco/ari075

    Article  Google Scholar 

  24. Dunham R A, Chitmanat C, Nichols A, et al. Predator avoidance of transgenic channel catfish containing salmonid growth hormone genes. Mar Biotechnol, 1999, 1: 545–551 10.1007/PL00011809, 1:CAS:528:DC%2BD3cXktFCisw%3D%3D, 10612679

    Article  PubMed  Google Scholar 

  25. Abrahams M V, Sutterlin A. The foraging and antipredator behaviour of growth-enhanced transgenic Atlantic salmon. Anim Behav, 1999, 58: 933–942 10.1006/anbe.1999.1229, 10564595

    Article  PubMed  Google Scholar 

  26. Sundström L F, Devlin R H, Johnsson J I, et al. Vertical position reflects Increased feeding motivation in growth hormone transgenic Coho salmon (Oncorhynchus kisutch). Ethology, 2003, 109: 701–712 10.1046/j.1439-0310.2003.00908.x

    Article  Google Scholar 

  27. Videler J J. Fish Swimming. London: Chapman and Hall, 1993

    Book  Google Scholar 

  28. Swanson C, Young P S, Cech Jr J C. Swimming performance of delta smelt: maximum performance, and behavioral and kinematic limitations on swimming at submaximal velocities. J Exp Biol, 1998, 201: 333–345 9427668

    PubMed  Google Scholar 

  29. Li D, Fu C, Hu W, et al. Rapid growth cost in “all-fish” growth hormone gene transgenic carp: Reduced critical swimming speed. Chinese Sci Bull, 2007, 52: 1501–1506 10.1007/s11434-007-0217-x, 1:CAS:528:DC%2BD2sXnsVCjsbg%3D

    Article  Google Scholar 

  30. Anthony P, Farrell W B, Devlin R H. Growth-enhanced transgenic salmon can be inferior swimmers. Can J Zool, 1997, 75: 335–337 10.1139/z97-043

    Article  Google Scholar 

  31. Lee C G, Devlin R H, Farrell A P. Swimming performance, oxygen consumption and excess post-exercise oxygen consumption in adult transgenic and ocean-ranched Coho salmon. J Fish Biol, 2003, 62: 753–766 10.1046/j.1095-8649.2003.00057.x

    Article  Google Scholar 

  32. Devlin R H, Johnsson J I, Smailus D E, et al. Increased ability to compete for food by growth hormone-transgenic coho salmon Oncorhynchus kisutch. Aquac Res, 1999, 30: 479–482 10.1046/j.1365-2109.1999.00359.x

    Article  Google Scholar 

  33. Stevens E D, Devlin R H. Gut size in GH transgenic coho salmon is enhanced by both the GH transgene and increased food intake. J Fish Biol, 2005, 66: 1633–1648 10.1111/j.0022-1112.2005.00707.x

    Article  Google Scholar 

  34. Don Stevens E, Sutterlin A. Gill Morphometry in growth hormone transgenic Atlantic salmon. Environ Bio Fishes, 1999, 54: 405–411 10.1023/A:1007574308129

    Article  Google Scholar 

  35. Seiler S M, Keeley E R. Morphological and swimming stamina differences between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri), rainbow trout (Oncorhynchus mykiss), and their hybrids. Can J Fish Aquat Sci, 2007, 64: 127–135 10.1139/F06-175

    Article  Google Scholar 

  36. Ostenfeld T H, McLean E, Devlin R H. Transgenesis changes body and head shape in Pacific salmon. J Fish Biol, 1998, 52: 850–854 10.1111/j.1095-8649.1998.tb00825.x

    Article  Google Scholar 

  37. Li D, Hu W, Wang Y, et al. Reduced swimming abilities in fast-growing transgenic common carp Cyprinus carpio associated with their morphological variations. J Fish Biol, 2009, 74: 186–197 10.1111/j.1095-8649.2008.02128.x

    Article  PubMed  Google Scholar 

  38. Boily P, Magnan P. Relationship between individual variation in morphological characters and swimming costs in brook charr (Salvelinus fontinalis) and yellow perch (Perca flavescens). J Exp Biol, 2002, 205: 1031–1036 11916998

    PubMed  Google Scholar 

  39. Johnsson J I, Björnsson B T. Growth hormone increases growth rate, appetite and dominance in juvenile rainbow trout, Oncorhynchus mykiss. Anim Behav, 1994, 48: 177–186 10.1006/anbe.1994.1224

    Article  Google Scholar 

  40. Jonsson E, Johnsson J I, Bjornsson B T. Growth hormone increases predation exposure of rainbow trout. Proc R Soc B, 1996, 263: 647–651 10.1098/rspb.1996.0097, 1:STN:280:DyaK283lt12jug%3D%3D, 8677262

    Article  PubMed  Google Scholar 

  41. Duan M, Zhang T, Hu W, et al. Elevated ability to compete for limited food resources by all-fish growth hormone transgenic common carp Cyprinus carpio. J Fish Biol, 2009, 75: 1459–1472 10.1111/j.1095-8649.2009.02393.x, 1:CAS:528:DC%2BD1MXhs1Slur7I

    Article  PubMed  Google Scholar 

  42. Don Stevens E, Sutterlin A, Cook T. Respiratory metabolism and swimming performance in growth hormone transgenic Atlantic salmon. Can J Fish Aquat Sci, 1998, 55: 2028–2035 10.1139/cjfas-55-9-2028

    Article  Google Scholar 

  43. Sundstrom L F, Lohmus M, Johnsson J I, et al. Growth hormone transgenic salmon pay for growth potential with increased predation mortality. Proc Biol Sci, 2004, 271(Suppl 5): S350–352 10.1098/rsbl.2004.0189, 15504015

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vandersteen Tymchuk W E, Abrahams M V, et al. Competitive ability and mortality of growth-enhanced transgenic coho salmon fry and parr when foraging for food. T Am Fish Soc, 2005, 134: 381–389 10.1577/T04-084.1

    Article  Google Scholar 

  45. Biro P A, Abrahams M V, Post J R. Direct manipulation of behaviour reveals a mechanism for variation in growth and mortality among prey populations. Anim Behav, 2007, 73: 891–896 10.1016/j.anbehav.2006.10.019

    Article  Google Scholar 

  46. Cook J T, McNiven M A, Richardson G F, et al. Growth rate, body composition and feed digestibility/conversion of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture, 2000, 188: 15–32 10.1016/S0044-8486(00)00331-8

    Article  Google Scholar 

  47. McKenzie D J, Martínez R, Morales A, et al. Effects of growth hormone transgenesis on metabolic rate, exercise performance and hypoxia tolerance in tilapia hybrids. J Fish Biol, 2003, 63: 398–409 10.1046/j.1095-8649.2003.00162.x, 1:CAS:528:DC%2BD3sXnvF2ltLc%3D

    Article  Google Scholar 

  48. Leggatt R A, Devlin R H, Farrell A P, et al. Oxygen uptake of growth hormone transgenic coho salmon during starvation and feeding. J Fish Biol, 2003, 62: 1053–1066 10.1046/j.1095-8649.2003.00096.x, 1:CAS:528:DC%2BD3sXls1GhsrY%3D

    Article  Google Scholar 

  49. Guan B, Hu W, Zhang T, et al. Metabolism traits of ‘all-fish’ growth hormone transgenic common carp (Cyprinus carpio L.). Aquaculture, 2008, 284: 217–223 10.1016/j.aquaculture.2008.06.028, 1:CAS:528:DC%2BD1cXht12gtb7P

    Article  Google Scholar 

  50. Devlin R H, Sundström L F, Muir W M. Interface of biotechnology and ecology for environmental risk assessments of transgenic fish. Trends Biotechnol, 2006, 24: 89–97 10.1016/j.tibtech.2005.12.008, 1:CAS:528:DC%2BD28XhtV2lsrs%3D, 16380181

    Article  PubMed  Google Scholar 

  51. Muir W M, Howard R D. Possible ecological risks of transgenic organism release when transgenes affect mating success: Sexual selection and the Trojan gene hypothesis. Proc Natl Acad Sci USA, 1999, 96: 13853–13856 10.1073/pnas.96.24.13853, 1:CAS:528:DyaK1MXns1OqtL0%3D, 10570162

    Article  PubMed  PubMed Central  Google Scholar 

  52. Roff D A, Heibo E, Vøllestad L A. The importance of growth and mortality costs in the evolution of the optimal life history. J Evol Biol, 2006, 19: 1920–1930 10.1111/j.1420-9101.2006.01155.x, 1:STN:280:DC%2BD28ngvVejsQ%3D%3D, 17040389

    Article  PubMed  Google Scholar 

  53. Stearns S C. The Evolution of Life Histories. New York: Oxford University Press, 1992

    Google Scholar 

  54. Tsikliras A, Antonopoulou E, Stergiou K. A phenotypic trade-off between previous growth and present fecundity in round sardinella Sardinella aurita. Popul Ecol, 2007, 49: 221–227 10.1007/s10144-007-0038-4

    Article  Google Scholar 

  55. Bessey C, Devlin R H, Liley N R, et al. Reproductive performance of growth-enhanced transgenic coho salmon. T Am Fish Soc, 2004, 133: 1205–1220 10.1577/T04-010.1

    Article  Google Scholar 

  56. Canosa L F, Chang J P, Peter R E. Neuroendocrine control of growth hormone in fish. Gen Compa Endocr, 2007, 151: 1–26 10.1016/j.ygcen.2006.12.010, 1:CAS:528:DC%2BD2sXitFeksr4%3D

    Article  Google Scholar 

  57. Degani G, Boker R, Jackson K. Growth hormone, gonad development, and steroid levels in female carp. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol, 1996, 115: 133–140 10.1016/S0742-8413(96)00079-5, 1:STN:280:DyaK1c3ivFOrsw%3D%3D, 9568360

    Article  PubMed  Google Scholar 

  58. Blaise O, Le Bail P Y, Weil C. Permissive effect of insulin-like growth factor I (IGF-I) on gonadotropin releasing-hormone action on in vitro growth hormone release, in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A: Physiology, 1997, 116: 75–81 10.1016/S0300-9629(96)00119-3

    Article  Google Scholar 

  59. Yu K L, Peter R E. Changes in brain levels of gonadotropin-releasing hormone and serum levels of gonadotropin and growth hormone in goldfish during spawning. Can J Zool, 1991, 69: 182–188 10.1139/z91-028, 1:CAS:528:DyaK3MXks1yrtbs%3D

    Article  Google Scholar 

  60. Sarang M, Lal B. Effect of piscine GH/IGF-I on final oocyte maturation in vitro in Heteropneustes fossilis. Fish Physiol Biochem, 2005, 31: 231–233 10.1007/s10695-006-0029-y, 1:CAS:528:DC%2BD28XptF2rsbg%3D, 20035463

    Article  PubMed  Google Scholar 

  61. Cecim M, Kerr J, Bartke A. Infertility in transgenic mice overexpressing the bovine growth hormone gene: luteal failure secondary to prolactin deficiency. Biol Reprod, 1995, 52: 1162–1166 10.1095/biolreprod52.5.1162, 1:CAS:528:DyaK2MXltVCjs7Y%3D, 7626717

    Article  PubMed  Google Scholar 

  62. Chandrashekar V, Bartke A, Coschigano K T, et al. Pituitary and testicular function in growth hormone receptor gene knockout mice. Endocrinology, 1999, 140: 1082–1088 10.1210/en.140.3.1082, 1:CAS:528:DyaK1MXhsFCjt7w%3D, 10067829

    PubMed  Google Scholar 

  63. Bachelot A, Monget P, Imbert-Bollore P, et al. Growth hormone is required for ovarian follicular growth. Endocrinology, 2002, 143: 4104–4112 10.1210/en.2002-220087, 1:CAS:528:DC%2BD38Xnt1ygt7Y%3D, 12239122

    Article  PubMed  Google Scholar 

  64. Keene D E, Suescun M O, Bostwick M G, et al. Puberty is delayed in male growth hormone receptor gene-disrupted mice. J Androl, 2002, 23: 661–668 1:CAS:528:DC%2BD38Xns1Knsb4%3D, 12185100

    PubMed  Google Scholar 

  65. Ando H, Luo Q, Koide N, et al. Effects of insulin-like growth factor I on GnRH-induced gonadotropin subunit gene expressions in masu salmon pituitary cells at different stages of sexual maturation. Gen Compa Endocr, 2006, 149: 21–29 10.1016/j.ygcen.2006.04.013, 1:CAS:528:DC%2BD28XptFSktro%3D

    Article  Google Scholar 

  66. Wang D-S, Jiao B, Hu C, et al. Discovery of a gonad-specific IGF subtype in teleost. Biochem Biophys Res Co, 2008, 367: 336–341 10.1016/j.bbrc.2007.12.136, 1:CAS:528:DC%2BD1cXpsFynsA%3D%3D

    Article  Google Scholar 

  67. Lu Y, Hu W, Zhu Z. Gene expression profiles of growth and reproduction related genes during the early development of common carp (cyprinus carpio L.). Acta Hydrobiol Sin, 2009, 33: 1126–1131 10.3724/SP.J.1035.2009.61126, 1:CAS:528:DC%2BC3cXks1ertL0%3D

    Article  Google Scholar 

  68. Hu W, Wang Y, Zhu Z. A perspective on fish gonad manipulation for biotechnical applications. Chinese Sci Bull, 2006, 51: 1–6 10.1007/s11434-005-1055-3, 1:CAS:528:DC%2BD28XhvFCqs7Y%3D

    Article  Google Scholar 

  69. Uzbekova S, Chyb J, Ferriere F, et al. Transgenic rainbow trout expressed sGnRH-antisense RNA under the control of sGnRH promoter of Atlantic salmon. J Mol Endocrinol, 2000, 25: 337–350 10.1677/jme.0.0250337, 1:CAS:528:DC%2BD3MXms1agsw%3D%3D, 11116212

    Article  PubMed  Google Scholar 

  70. Maclean N, Molina G H A, Ashton T, et al. Reversibly-sterile fish via transgenesis. ISB News Rep, 2003, 3-5

  71. Li S, Hu W, Wang Y, et al. Cloning and experssion analysis in mature individuals of salmon gonadotropin-releasing hormone (sGnRH) gene in common carp. Acta Genet Sin, 2004, 31: 1072–1081 1:CAS:528:DC%2BD2MXkslKjsrY%3D, 15552041

    PubMed  Google Scholar 

  72. Li S, Hu W, Wang Y, et al. Cloning and expression analysis in mature individuals of two chicken type-II GnRH (cGnRH-II) genes in common carp (Cyprinus carpio). Sci China C Life Sci, 2004, 47: 349–358 10.1360/03yc0117, 1:CAS:528:DC%2BD2cXovFOksro%3D, 15493476

    Article  PubMed  Google Scholar 

  73. Hu W, Li S, Tang B, et al. Antisense for gonadotropin-releasing hormone reduces gonadotropin synthesis and gonadal development in transgenic common carp (Cyprinus carpio). Aquaculture, 2007, 271: 498–506 10.1016/j.aquaculture.2007.04.075, 1:CAS:528:DC%2BD2sXhtVSgsLvE

    Article  Google Scholar 

  74. Wong A C, Van Eenennaam A L. Transgenic approaches for the reproductive containment of genetically engineered fish. Aquaculture, 2008, 275: 1–12 10.1016/j.aquaculture.2007.12.026

    Article  Google Scholar 

  75. Ma X, Dong Y, Matzuk M M, et al. Targeted disruption of luteinizing hormone β-subunit leads to hypogonadism, defects in gonadal steroidogenesis, and infertility. Proc Natl Acad Sci USA, 2004, 101: 17294–17299 10.1073/pnas.0404743101, 1:CAS:528:DC%2BD2cXhtFansr7F, 15569941

    Article  PubMed  PubMed Central  Google Scholar 

  76. Huang W T, Hsieh J C, Chiou M J, et al. Application of RNAi technology to the inhibition of zebrafish GtHalpha, FSHbeta, and LHbeta expression and to functional analyses. Zoolog Sci, 2008, 25: 614–621 10.2108/zsj.25.614, 1:CAS:528:DC%2BD1cXhsFWksbfM, 18624572

    Article  PubMed  Google Scholar 

  77. Wang Y, Hu W, Liu W Y, et al. Identification and characterization of a novel splice variant of gonadotropin alpha subunit in the common carp Cyprinus carpio. J Fish Biol, 2007, 71: 1082–1094 10.1111/j.1095-8649.2007.01582.x, 1:CAS:528:DC%2BD2sXhtlOlsLzL

    Article  Google Scholar 

  78. Ciruna B, Weidinger G, Knaut H, et al. Production of maternalzygotic mutant zebrafish by germ-line replacement. Proc Natl Acad Sci USA, 2002, 99: 14919–14924 10.1073/pnas.222459999, 1:CAS:528:DC%2BD38Xpt1yrtLs%3D, 12397179

    Article  PubMed  PubMed Central  Google Scholar 

  79. Slanchev K, Stebler J, de la Cueva-Méndez G, et al. Development without germ cells: The role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci USA, 2005, 102: 4074–4079 10.1073/pnas.0407475102, 1:CAS:528:DC%2BD2MXis12jtrw%3D, 15728735

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZuoYan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Zhu, Z. Integration mechanisms of transgenes and population fitness of GH transgenic fish. Sci. China Life Sci. 53, 401–408 (2010). https://doi.org/10.1007/s11427-010-0088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0088-2

Keywords

Navigation