Skip to main content
Log in

Research progress on Drosophila visual cognition in China

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Visual cognition, as one of the fundamental aspects of cognitive neuroscience, is generally associated with high-order brain functions in animals and human. Drosophila, as a model organism, shares certain features of visual cognition in common with mammals at the genetic, molecular, cellular, and even higher behavioral levels. From learning and memory to decision making, Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected. Armed with powerful tools of genetic manipulation in Drosophila, an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective. The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila. Here, we consider a series of the higher cognitive behaviors beyond learning and memory, such as visual pattern recognition, feature and context generalization, different feature memory traces, salience-based decision, attention-like behavior, and cross-modal leaning and memory. We discuss the possible general gain-gating mechanism implementing by dopamine — mushroom body circuit in fly’s visual cognition. We hope that our brief review on this aspect will inspire further study on visual cognition in flies, or even beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu L, Wolf R, Ernst R, et al. Context generalization in Drosophila visual learning requires the mushroom bodies. Nature, 1999, 400: 753–756, 10466722, 10.1038/22919, 1:CAS:528:DyaK1MXltFKns7o%3D

    Article  CAS  PubMed  Google Scholar 

  2. Tang S, Guo A. Choice behavior of Drosophila facing contradictory visual cues. Science, 2001, 294: 1543–1547, 11711680, 10.1126/science.1058237, 1:CAS:528:DC%2BD3MXosFKisbk%3D

    Article  CAS  PubMed  Google Scholar 

  3. Tang S, Wolf R, Xu S, et al. Visual pattern recognition in Drosophila is invariant for retinal position. Science, 2004, 305: 1020–1022, 15310908, 10.1126/science.1099839, 1:CAS:528:DC%2BD2cXmsVGmtrw%3D

    Article  CAS  PubMed  Google Scholar 

  4. Guo J, Guo A. Crossmodal interactions between olfactory and visual learning in Drosophila. Science, 2005, 309: 307–310, 16002621, 10.1126/science.1111280, 1:CAS:528:DC%2BD2MXlsl2jtLw%3D

    Article  CAS  PubMed  Google Scholar 

  5. Liu G, Seiler H, Wen A, et al. Distinct memory traces for two visual features in the Drosophila brain. Nature, 2006, 439: 551–556, 16452971, 10.1038/nature04381, 1:CAS:528:DC%2BD28XpsVCgsg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  6. Peng Y, Xi W, Zhang W, et al. Experience improves feature extraction in Drosophila. J Neurosci, 2007, 27: 5139–5145, 17494699, 10.1523/JNEUROSCI.0472-07.2007, 1:CAS:528:DC%2BD2sXmtVWrsLo%3D

    Article  CAS  PubMed  Google Scholar 

  7. Zhang K, Guo J Z, Peng Y, et al. Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. Science, 2007, 316: 1901–1904, 17600217, 10.1126/science.1137357, 1:CAS:528:DC%2BD2sXmvV2mu7w%3D

    Article  CAS  PubMed  Google Scholar 

  8. Xi W, Peng Y, Guo J, et al. Mushroom bodies modulate salience-based selective fixation behavior in Drosophila. Eur J Neurosci, 2008, 27: 1441–1451, 18364023, 10.1111/j.1460-9568.2008.06114.x

    Article  PubMed  Google Scholar 

  9. Heisenberg M, Wolf R. Reafferent control of optomotor yaw torque in Drosophila melanogaster. J Comp Physiol A, 1988, 163: 373–388, 10.1007/BF00604013

    Article  Google Scholar 

  10. Wolf R, Heisenberg M. Basic organization of operant behavior as revealed in Drosophila flight orientation. J Comp Physiol A, 1991, 169: 699–705, 1795235, 10.1007/BF00194898, 1:STN:280:DyaK387nslWqsw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  11. Sutton R S, Barto A G. Reinforcement Learning: An Introduction. MA: MIT Press. 1998.

    Google Scholar 

  12. Skinner B F. The Behavior of Organisms: An Experimental Analysis. Oxford: Appleton-Century. 1938.

    Google Scholar 

  13. Götz K G. Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik, 1964, 2: 77–92, 5833196, 10.1007/BF00288561

    Article  PubMed  Google Scholar 

  14. Heisenberg M, Wolf R. Vision in Drosophila. In studies of brain function. Berlin: Springer. 1984. XII.

    Google Scholar 

  15. Guo A, Li L, Xia S Z, et al. Conditioned visual flight orientation in Drosophila: dependence on age, practice, and diet. Learn Mem, 1996, 3: 49–59, 10456076, 10.1101/lm.3.1.49, 1:STN:280:DyaK1MzosFSiug%3D%3D

    Article  CAS  PubMed  Google Scholar 

  16. Brembs B, Heisenberg M. Conditioning with compound stimuli in Drosophila melanogaster in the flight simulator. J Exp Biol, 2001, 204: 2849–2859, 11683440, 1:STN:280:DC%2BD3MngvVCjtw%3D%3D

    CAS  PubMed  Google Scholar 

  17. Xia S, Liu L, Feng C, et al. Memory consolidation in Drosophila operant visual learning. Learn Mem, 1997, 4: 205–218, 10456064, 10.1101/lm.4.2.205, 1:STN:280:DyaK1MzosFSjtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  18. von der Malsburg C. Binding in models of perception and brain function. Curr Opin Neurobiol, 1995, 5: 520–526, 7488855, 10.1016/0959-4388(95)80014-X

    Article  PubMed  Google Scholar 

  19. Singer W, Gray C M. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci, 1995, 18: 555–586, 7605074, 10.1146/annurev.ne.18.030195.003011, 1:CAS:528:DyaK2MXktl2lt7c%3D

    Article  CAS  PubMed  Google Scholar 

  20. Singer W. Neuronal representations, assemblies and temporal coherence. Prog Brain Res, 1993, 95: 461–474, 8493353, 10.1016/S0079-6123(08)60388-X, 1:STN:280:DyaK3s3mt1Wqtw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  21. Stein B E, Meredith M A, Wallace M T. The visually responsive neuron and beyond: multisensory integration in cat and monkey. Prog Brain Res, 1993, 95: 79–90, 8493355, 10.1016/S0079-6123(08)60359-3, 1:STN:280:DyaK3s3mt1Wqug%3D%3D

    Article  CAS  PubMed  Google Scholar 

  22. Zahn J R, Abel L A, Dell’Osso L F. Audio-ocular response characteristics. Sens Processes, 1978, 2: 32–37, 705354, 1:STN:280:DyaE1M%2FjsFCnug%3D%3D

    CAS  PubMed  Google Scholar 

  23. Perrott D R, Saberi K, Brown K, et al. Auditory psychomotor coordination and visual search performance. Percept Psychophys, 1990, 48: 214–226, 2216648, 1:STN:280:DyaK3M%2Fhs1Omsw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  24. Hughes H C, Reuter-Lorenz P A, Nozawa G, et al. Visual-auditory interactions in sensorimotor processing: saccades versus manual responses. J Exp Psychol Hum Percept Perform, 1994, 20: 131–153, 8133219, 10.1037/0096-1523.20.1.131, 1:STN:280:DyaK2c7otVSgsw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  25. Frens M A, Van Opstal A J, Van der Willigen R F. Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements. Percept Psychophys, 1995, 57: 802–816, 7651805, 1:STN:280:DyaK2MzotVamtw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  26. Stein B, Meredith M, Huneycutt W, et al. Behavioral indices of multisensory integration: orientation to visual cues is affected by auditory stimuli. J Cogn Neurosci, 1989, 1: 12–24, 10.1162/jocn.1989.1.1.12

    Article  CAS  PubMed  Google Scholar 

  27. Brembs B, Heisenberg M. The operant and the classical in conditioned orientation of Drosophila melanogaster at the flight simulator. Learn Mem, 2000, 7: 104–115, 10753977, 10.1101/lm.7.2.104, 1:STN:280:DC%2BD3c3hvFOntg%3D%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wallace M T, Meredith M A, Stein B E: Integration of multiple sensory modalities in cat cortex. Exp Brain Res, 1992, 91: 484–488, 1483520, 10.1007/BF00227844, 1:STN:280:DyaK3s7jtFSjsQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  29. Wilkinson L K, Meredith M A, Stein B E. The role of anterior ectosylvian cortex in cross-modality orientation and approach behavior. Exp Brain Res, 1996, 112: 1–10, 8951401, 10.1007/BF00227172, 1:STN:280:DyaK2s7gvFWhsw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  30. Barth D S, Goldberg N, Brett B, et al. The spatiotemporal organization of auditory, visual, and auditory-visual evoked potentials in rat cortex. Brain Res, 1995, 678: 177–190, 7620886, 10.1016/0006-8993(95)00182-P

    Article  PubMed  Google Scholar 

  31. Mistlin A J, Perrett D I. Visual and somatosensory processing in the macaque temporal cortex: the role of ‘expectation’. Exp Brain Res, 1990, 82: 437–450, 2286243, 10.1007/BF00231263, 1:STN:280:DyaK3M7jvVOjtw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  32. Duhamel J-R, Colby C, Goldberg M. Congruent representations of visual and somatosensory space in single neurons of monkey ventral intraparietal cortex (area VIP). In: Paillard J (ed) Brain and Space. New York: Oxford University Press. 1991. 223–236

    Google Scholar 

  33. Graziano M S, Gross C G: Spatial maps for the control of movement. Curr Opin Neurobiol, 1998, 8: 195–201, 9635202, 10.1016/S0959-4388(98)80140-2, 1:CAS:528:DyaK1cXjvFeis7w%3D

    Article  CAS  PubMed  Google Scholar 

  34. Carmichael S T, Price J L. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol, 1995, 363: 642–664, 8847422, 10.1002/cne.903630409, 1:STN:280:DyaK28vgt1GmtQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  35. Rolls E T, Baylis L L. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci, 1994, 14: 5437–5452, 8083747, 1:STN:280:DyaK2czmsFKrug%3D%3D

    CAS  PubMed  Google Scholar 

  36. Ettlinger G, Wilson W A. Cross-modal performance: behavioural processes, phylogenetic considerations and neural mechanisms. Behav Brain Res, 1990, 40: 169–192, 2178346, 10.1016/0166-4328(90)90075-P, 1:STN:280:DyaK3M7js1OhtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  37. Strausfeld N J, Campos-Ortega J A. Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. Science, 1977, 195: 894–897, 841315, 10.1126/science.841315, 1:STN:280:DyaE2s7islaqtQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  38. Laurent G, Davidowitz H. Encoding of olfactory information with oscillating neural assemblies. Science, 1994, 265: 1872–1875, 17797226, 10.1126/science.265.5180.1872

    Article  CAS  PubMed  Google Scholar 

  39. Laurent G, Naraghi M. Odorant-induced oscillations in the mushroom bodies of the locust. J Neurosci, 1994, 14: 2993–3004, 8182454, 1:STN:280:DyaK2c3jvVelsQ%3D%3D

    CAS  PubMed  Google Scholar 

  40. Laurent G. Odor images and tunes. Neuron, 1996, 16: 473–476, 8785044, 10.1016/S0896-6273(00)80066-5, 1:CAS:528:DyaK28XhvFylsLs%3D

    Article  CAS  PubMed  Google Scholar 

  41. van Swinderen B, Greenspan R J. Salience modulates 20–30 Hz brain activity in Drosophila. Nat Neurosci, 2003, 6: 579–586, 12717438, 10.1038/nn1054, 1:CAS:528:DC%2BD3sXjvF2ktLc%3D

    Article  PubMed  CAS  Google Scholar 

  42. Zeman A. Consciousness. Brain, 2001, 124: 1263–1289, 11408323, 10.1093/brain/124.7.1263, 1:STN:280:DC%2BD3MzksFWgtg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  43. Land M F. Visual acuity in insects. Annu Rev Entomol, 1997, 42: 147–177, 15012311, 10.1146/annurev.ento.42.1.147, 1:CAS:528:DyaK2sXjvFSmtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  44. Ernst R, Heisenberg M. The memory template in Drosophila pattern vision at the flight simulator. Vision Res, 1999, 39: 3920–3933, 10748925, 10.1016/S0042-6989(99)00114-5, 1:STN:280:DC%2BD3c3ht1CisQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  45. Dill M, Wolf R, Heisenberg M. Visual pattern recognition in Drosophila involves retinotopic matching. Nature, 1993, 365: 751–753, 8413652, 10.1038/365751a0, 1:STN:280:DyaK2c%2FhvFynsQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  46. Dill M, Heisenberg M. Visual pattern memory without shape recognition. Philos Trans R Soc Lond B Biol Sci, 1995, 349: 143–152, 8668723, 10.1098/rstb.1995.0100, 1:STN:280:DyaK283lvF2huw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  47. Davis R L. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci, 2005, 28: 275–302, 16022597, 10.1146/annurev.neuro.28.061604.135651, 1:CAS:528:DC%2BD2MXosVegtLk%3D

    Article  CAS  PubMed  Google Scholar 

  48. Zars T, Fischer M, Schulz R, et al. Localization of a short-term memory in Drosophila. Science, 2000, 288: 672–675, 10784450, 10.1126/science.288.5466.672, 1:CAS:528:DC%2BD3cXivFGhurY%3D

    Article  CAS  PubMed  Google Scholar 

  49. Brand A H, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 1993, 118: 401–415, 8223268, 1:CAS:528:DyaK3sXlvFKrt7w%3D

    CAS  PubMed  Google Scholar 

  50. Zars T, Wolf R, Davis R, et al. Tissue-specific expression of a type I adenylyl cyclase rescues the rutabaga mutant memory defect: in search of the engram. Learn Mem, 2000, 7: 18–31, 10706599, 10.1101/lm.7.1.18, 1:STN:280:DC%2BD3c7ntF2gtg%3D%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McGuire S E, Le P T, Osborn A J, et al. Spatiotemporal rescue of memory dysfunction in Drosophila. Science, 2003, 302: 1765–1768, 14657498, 10.1126/science.1089035, 1:CAS:528:DC%2BD3sXpsVWnsrg%3D

    Article  CAS  PubMed  Google Scholar 

  52. Mao Z, Roman G, Zong L, et al. Pharmacogenetic rescue in time and space of the rutabaga memory impairment by using Gene-Switch. Proc Natl Acad Sci USA, 2004, 101: 198–203, 14684832, 10.1073/pnas.0306128101, 1:CAS:528:DC%2BD2cXjvFaguw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  53. Wang Z, Pan Y, Li W, et al. Visual pattern memory requires foraging function in the central complex of Drosophila. Learn Mem, 2008, 15: 133–142, 18310460, 10.1101/lm.873008, 1:CAS:528:DC%2BD1cXotFGnsro%3D

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Li W, Pan Y, Wang Z, et al. Morphological characterization of single fan-shaped body neurons in Drosophila melanogaster. Cell Tissue Res, 2009, 336:509–519, 19357870, 10.1007/s00441-009-0781-2

    Article  PubMed  Google Scholar 

  55. Pan Y F, Zhou Y Q, Guo C,et al. Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem, 2009, 16: 289–295, 19389914, 10.1101/lm.1331809

    Article  PubMed  Google Scholar 

  56. Quinn W G. Neurobiology: memories of a fruitfly. Nature, 2006, 439: 546–548, 16452967, 10.1038/439546a, 1:CAS:528:DC%2BD28XpsVCisQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  57. Wehner R. Spatial vision in arthropods. In (H. Autrum ed.) Handbook of Sensory Physiology VII/6C. Berlin: Springer. 1981. 287–616.

    Google Scholar 

  58. Giurfa M, Eichmann B, Menzel R. Symmetry perception in an insect Nature, 1996, 382: 458–461, 1:CAS:528:DyaK28Xks1Olurg%3D

    CAS  Google Scholar 

  59. Giurfa M, Zhang S, Jenett A, et al. The concepts of ’sameness’ and ‘difference’ in an insect. Nature, 2001, 410: 930–933, 11309617, 10.1038/35073582, 1:STN:280:DC%2BD3M3hvFCisw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  60. Benard J, Stach S, Giurfa M. Categorization of visual stimuli in the honeybee Apis mellifera. Anim Cogn, 2006, 9: 257–270, 16909238, 10.1007/s10071-006-0032-9

    Article  PubMed  Google Scholar 

  61. Menzel R, Giurfa M. Cognition by a mini brain. Nature, 1999, 400: 718–719, 10466719, 10.1038/23371, 1:CAS:528:DyaK1MXls1Ogu7c%3D

    Article  CAS  PubMed  Google Scholar 

  62. Heisenberg M. Mushroom body memoir: from maps to models. Nat Rev Neurosci, 2003, 4: 266–275, 12671643, 10.1038/nrn1074, 1:CAS:528:DC%2BD3sXisFWqt7o%3D

    Article  CAS  PubMed  Google Scholar 

  63. Dubnau J, Grady L, Kitamoto T, et al. Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature, 2001, 411: 476–480, 11373680, 10.1038/35078077, 1:CAS:528:DC%2BD3MXkt1ejtrc%3D

    Article  CAS  PubMed  Google Scholar 

  64. McGuire S E, Deshazer M, Davis R L. Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog Neurobiol, 2005, 76: 328–347, 16266778, 10.1016/j.pneurobio.2005.09.003, 1:CAS:528:DC%2BD2MXht1arsL7N

    Article  CAS  PubMed  Google Scholar 

  65. Keene A C, Waddell S. Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci, 2007, 8: 341–354, 17453015, 10.1038/nrn2098, 1:CAS:528:DC%2BD2sXksFSis78%3D

    Article  CAS  PubMed  Google Scholar 

  66. O’Reilly R C: Biologically based computational models of high-level cognition. Science, 2006, 314: 91–94, 17023651, 10.1126/science.1127242, 1:CAS:528:DC%2BD28XhtVCiurvK

    Article  PubMed  CAS  Google Scholar 

  67. Zhang S W, Srinivasan M V. Prior experience enhances pattern discrimination in insect vision. Nature, 1994, 368: 330–332, 10.1038/368330a0

    Article  Google Scholar 

  68. Sugrue L P, Corrado G S, Newsome W T. Choosing the greater of two goods: neural currencies for valuation and decision making. Nat Rev Neurosci, 2005, 6: 363–375, 15832198, 10.1038/nrn1666, 1:CAS:528:DC%2BD2MXjs1Oksr0%3D

    Article  CAS  PubMed  Google Scholar 

  69. Padoa-Schioppa C, Assad J A. Neurons in the orbitofrontal cortex encode economic value. Nature, 2006, 441: 223–226, 16633341, 10.1038/nature04676, 1:CAS:528:DC%2BD28XksVGnsrk%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang T, Shadlen M N. Probabilistic reasoning by neurons. Nature, 2007, 447: 1075–1080, 17546027, 10.1038/nature05852, 1:CAS:528:DC%2BD2sXmvFKmurg%3D

    Article  CAS  PubMed  Google Scholar 

  71. Platt M L. Neural correlates of decisions. Curr Opin Neurobiol, 2002, 12: 141–148, 12015229, 10.1016/S0959-4388(02)00302-1, 1:CAS:528:DC%2BD38XjsFWht7g%3D

    Article  CAS  PubMed  Google Scholar 

  72. Hopfield JJ: Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci U S A 1984, 81: 3088–3092., 6587342, 10.1073/pnas.81.10.3088, 1:STN:280:DyaL2c3itF2jug%3D%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wills T J, Lever C, Cacucci F,’et al. Attractor dynamics in the hippocampal representation of the local environment. Science, 2005, 308: 873–876, 15879220, 10.1126/science.1108905, 1:CAS:528:DC%2BD2MXjvVantL4%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Riemensperger T, Voller T, Stock P, et al. Punishment prediction by dopaminergic neurons in Drosophila. Curr Biol, 2005, 15: 1953–1960, 16271874, 10.1016/j.cub.2005.09.042, 1:CAS:528:DC%2BD2MXhtFyks7bO

    Article  CAS  PubMed  Google Scholar 

  75. Schultz W. Behavioral theories and the neurophysiology of reward. Annu Rev Psychol, 2006, 57: 87–115, 16318590, 10.1146/annurev.psych.56.091103.070229

    Article  PubMed  Google Scholar 

  76. Gruber A J, Dayan P, Gutkin B S, et al. Dopamine modulation in the basal ganglia locks the gate to working memory. J Comput Neurosci, 2006, 20: 153–166, 16699839, 10.1007/s10827-005-5705-x

    Article  PubMed  Google Scholar 

  77. Yin Y, Chen N, Zhang S,et al. Choice strategies in Drosophila are based on competition between olfactory memories. Eur J Neurosci, 2009, 30: 279–288, 19614975, 10.1111/j.1460-9568.2009.06821.x

    Article  PubMed  Google Scholar 

  78. James W. The Principles of Psychology. New York: Henry Holt. 1890.

    Book  Google Scholar 

  79. Posner R A. Rational Choice, Behavioral Economics, and the Law. Stanford Law Review, 1998, 50: 1551–1575, 10.2307/1229305

    Article  Google Scholar 

  80. Reynolds J H, Chelazzi L. Attentional modulation of visual processing. Annu Rev Neurosci, 2004, 27: 611–647, 15217345, 10.1146/annurev.neuro.26.041002.131039, 1:CAS:528:DC%2BD2cXmslantLY%3D

    Article  CAS  PubMed  Google Scholar 

  81. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci, 1995, 18: 193–222, 7605061, 10.1146/annurev.ne.18.030195.001205, 1:CAS:528:DyaK2MXktl2ltrk%3D

    Article  CAS  PubMed  Google Scholar 

  82. Chun M M, Marois R. The dark side of visual attention. Curr Opin Neurobiol, 2002, 12: 184–189, 12015235, 10.1016/S0959-4388(02)00309-4, 1:CAS:528:DC%2BD38XjsFWhtLw%3D

    Article  CAS  PubMed  Google Scholar 

  83. Kastner S, Ungerleider L G. Mechanisms of visual attention in the human cortex. Annu Rev Neurosci, 2000, 23: 315–341, 10845067, 10.1146/annurev.neuro.23.1.315, 1:CAS:528:DC%2BD3cXjs1Gmsrs%3D

    Article  CAS  PubMed  Google Scholar 

  84. Corbetta M, Shulman G L. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci, 2002, 3: 201–215, 11994752, 10.1038/nrn755, 1:CAS:528:DC%2BD38Xit1GrtLc%3D

    Article  CAS  PubMed  Google Scholar 

  85. Yantis S, Serences J T. Cortical mechanisms of space-based and object-based attentional control. Curr Opin Neurobiol, 2003, 13: 187–193, 12744972, 10.1016/S0959-4388(03)00033-3, 1:CAS:528:DC%2BD3sXjs1Gisb4%3D

    Article  CAS  PubMed  Google Scholar 

  86. Spaethe J, Tautz J, Chittka L. Do honeybees detect colour targets using serial or parallel visual search? J Exp Biol, 2006, 209: 987–993, 16513924, 10.1242/jeb.02124

    Article  PubMed  Google Scholar 

  87. Poggio T, Reichardt W. Visual control of orientation behaviour in the fly. Part II. Towards the underlying neural interactions. Q Rev Biophys, 1976, 9: 377–438, 790442, 10.1017/S0033583500002535, 1:STN:280:DyaE2s%2FjslarsA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  88. Wolf R, Heisenberg M. Visual control of straight flight in Drosophila melanogaster. J Comp Physiol A, 1990, 167: 269–283, 2120434, 10.1007/BF00188119, 1:STN:280:DyaK3M%2Fht1aqtg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  89. Cowan N, Morey C C. Visual working memory depends on attentional filtering. Trends Cogn Sci, 2006, 10: 139–141, 16497538, 10.1016/j.tics.2006.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  90. Peng Y, Guo A. Novel stimulus-induced calcium efflux in Drosophila mushroom bodies. Eur J Neurosci, 2007, 25: 2034–2044, 17419759, 10.1111/j.1460-9568.2007.05425.x

    Article  PubMed  Google Scholar 

  91. Liu X, Krause W C, Davis R L. GABAA receptor RDL inhibits Drosophila olfactory associative learning. Neuron, 2007, 56: 1090–1102, 18093529, 10.1016/j.neuron.2007.10.036, 1:CAS:528:DC%2BD1cXksFGlsQ%3D%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pitman J L, McGill J J, Keegan K P, et al. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature, 2006, 441: 753–756, 16760979, 10.1038/nature04739, 1:CAS:528:DC%2BD28XltlKqur8%3D

    Article  CAS  PubMed  Google Scholar 

  93. Joiner W J, Crocker A, White B H, et al.: Sleep in Drosophila is regulated by adult mushroom bodies. Nature, 2006, 441: 757–760, 16760980, 10.1038/nature04811, 1:CAS:528:DC%2BD28XltlKqurc%3D

    Article  CAS  PubMed  Google Scholar 

  94. Nitz D A, van Swinderen B, Tononi G, et al. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr Biol, 2002, 12: 1934–1940, 12445387, 10.1016/S0960-9822(02)01300-3, 1:CAS:528:DC%2BD38XovFCitb0%3D

    Article  CAS  PubMed  Google Scholar 

  95. Greenspan R J, van Swinderen B. Cognitive consonance: complex brain functions in the fruit fly and its relatives. Trends Neurosci, 2004, 27: 707–711, 15541510, 10.1016/j.tins.2004.10.002, 1:CAS:528:DC%2BD2cXpslGit7g%3D

    Article  CAS  PubMed  Google Scholar 

  96. Sinakevitch I, Farris S M, Strausfeld N J. Taurine-, aspartate- and glutamate-like immunoreactivity identifies chemically distinct subdivisions of Kenyon cells in the cockroach mushroom body. J Comp Neurol, 2001, 439: 352–367, 11596059, 10.1002/cne.1355, 1:STN:280:DC%2BD3MrkvFSjtQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  97. Lu S, Fang J, Guo A, et al. Impact of network topology on decision-making. Neural Netw, 2009, 22: 30–40, 18995986, 10.1016/j.neunet.2008.09.012

    Article  PubMed  Google Scholar 

  98. Han K A, Millar N S, Grotewiel M S, et al. DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron, 1996, 16: 1127–1135, 8663989, 10.1016/S0896-6273(00)80139-7, 1:CAS:528:DyaK28XjvFaks7s%3D

    Article  CAS  PubMed  Google Scholar 

  99. Kim Y C, Lee H G, Seong C S, et al. Expression of a D1 dopamine receptor dDA1/DmDOP1 in the central nervous system of Drosophila melanogaster. Gene Expr Patterns, 2003, 3: 237–245, 12711555, 10.1016/S1567-133X(02)00098-4, 1:CAS:528:DC%2BD3sXjtFertr8%3D

    Article  CAS  PubMed  Google Scholar 

  100. Kokay I C, Ebert P R, Kirchhof B S, et al. Distribution of dopamine receptors and dopamine receptor homologs in the brain of the honey bee, Apis mellifera L. Microsc Res Tech, 1999, 44: 179–189, 10084824, 10.1002/(SICI)1097-0029(19990115/01)44:2/3<179::AID-JEMT9>3.0.CO;2-K, 1:CAS:528:DyaK1MXhtFSktrg%3D

    Article  CAS  PubMed  Google Scholar 

  101. Kim Y C, Lee H G, Han K A. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J Neurosci, 2007, 27: 7640–7647, 17634358, 10.1523/JNEUROSCI.1167-07.2007, 1:CAS:528:DC%2BD2sXos1Crsbs%3D

    Article  CAS  PubMed  Google Scholar 

  102. Zhang S, Yin Y, Lu H, et al. Increased dopaminergic signaling impairs aversive olfactory memory retention in Drosophila. Biochem Biophys Res Commun, 2008, 370: 82–86, 18342622, 10.1016/j.bbrc.2008.03.015, 1:CAS:528:DC%2BD1cXks1Kitbo%3D

    Article  CAS  PubMed  Google Scholar 

  103. Liu T, Dartevelle L, Yuan C,et al. Increased dopamine level enhances male-male courtship in Drosophila. J Neurosci, 2008, 28: 5539–5546, 18495888, 10.1523/JNEUROSCI.5290-07.2008, 1:CAS:528:DC%2BD1cXmslWitL0%3D

    Article  CAS  PubMed  Google Scholar 

  104. Liu T, Dartevelle L, Yuan C, et al. Reduction of dopamine level enhances the attractiveness of male Drosophila to other males. PLoS ONE, 2009, 4: e4574, 19238209, 10.1371/journal.pone.0004574, 1:CAS:528:DC%2BD1MXislOqsb4%3D

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Cools R, Robbins T W. Chemistry of the adaptive mind. Philos Transact A Math Phys Eng Sci, 2004, 362: 2871–2888, 15539374, 10.1098/rsta.2004.1468, 1:CAS:528:DC%2BD2MXos1Cqtg%3D%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AiKe Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, A., Zhang, K., Peng, Y. et al. Research progress on Drosophila visual cognition in China. Sci. China Life Sci. 53, 374–384 (2010). https://doi.org/10.1007/s11427-010-0073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0073-9

Keywords

Navigation