Skip to main content
Log in

Visual neuroscience research in China

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Historically, vision research in China was one of a few distinct research programs within the Chinese Academy of Sciences (CAS). With improved funding opportunities and research environment in neuroscience, vision research at several research institutes within the academy has made significant progress not only in the quantity of publications, but also in the quality of the work. Based on our own expertise, this review is mainly focused on the findings that have advanced the understanding of visual processing in the central visual pathway, visual perceptual learning, visual development and eye diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fitzpatrick D. Seeing beyond the receptive field in primary visual cortex. Curr Opin Neurobiol, 2000, 10: 438–443, 10.1016/S0959-4388(00)00113-6, 10981611, 1:CAS:528:DC%2BD3cXlvFCnsrk%3D

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz O, Hsu A, Dayan P. Space and time in visual context. Nat Rev Neurosci, 2007, 8: 522–535, 10.1038/nrn2155, 17585305

    Article  CAS  PubMed  Google Scholar 

  3. Allman J, Miezin F, McGuinness E. Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annu Rev Neurosci, 1985, 8407-430

  4. Gilbert C D. Adult cortical dynamics. Physiol Rev, 1998, 78: 467–485, 9562036, 1:STN:280:DyaK1c3itVGjsQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  5. Li C Y, Li W. Extensive integration field beyond the classical receptive field of cat’s striate cortical neurons—classification and tuning properties. Vision Res, 1994, 34: 2337–2355, 10.1016/0042-6989(94)90280-1, 7975275, 1:STN:280:DyaK2M%2FmsFOhsQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  6. Li C Y, Lei J J, Yao H S. Shift in speed selectivity of visual cortical neurons: a neural basis of perceived motion contrast. Proc Natl Acad Sci USA, 1999, 96(7): 4052–4056, 10.1073/pnas.96.7.4052, 10097161, 1:CAS:528:DyaK1MXjslCht74%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yao H, Li C Y. Clustered organization of neurons with similar extra- receptive field properties in the primary visual cortex. Neuron, 2002, 35: 547–553, 10.1016/S0896-6273(02)00782-1, 12165475, 1:CAS:528:DC%2BD38Xmt12is7o%3D

    Article  CAS  PubMed  Google Scholar 

  8. Chen G, Dan Y, Li C Y. Stimulation of non-classical receptive field enhances orientation selectivity in the cat. J Physiol, 2005, 564(Pt 1): 233–243, 10.1113/jphysiol.2004.080051, 15677690, 1:CAS:528:DC%2BD2MXjs1CntLc%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu W F, Shen Z M, Li C Y. Spatial phase sensitivity of V1 neurons in alert monkey. Cereb Cortex, 2005, 15: 1697–1702, 10.1093/cercor/bhi046, 15703250

    Article  PubMed  Google Scholar 

  10. Shen Z M, Xu W F, Li C Y. Cue-invariant detection of centre-surround discontinuity by V1 neurons in awake macaque monkey. J Physiol, 2007, 583(Pt 2): 581–592, 10.1113/jphysiol.2007.130294, 17599965, 1:CAS:528:DC%2BD2sXhtVeltrbN

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song X M, Li C Y. Contrast-dependent and contrast-independent spatial summation of primary visual cortical neurons of the cat. Cereb Cortex, 2008, 18: 331–336, 10.1093/cercor/bhm057, 17494058

    Article  PubMed  Google Scholar 

  12. Sun C, Chen X, Huang L, et al. Orientation bias of the extraclassical receptive field of the relay cells in the cat’s dorsal lateral geniculate nucleus. Neuroscience, 2004, 125: 495–505, 10.1016/j.neuroscience.2004.01.036, 15062991, 1:CAS:528:DC%2BD2cXivVemu70%3D

    Article  CAS  PubMed  Google Scholar 

  13. Shen Z M, Xu W F, Li C Y. Orientation biased extended surround of the receptive field of cat retinal ganglion cells. Neuroscience, 2000, 98: 207–212, 10.1016/S0306-4522(00)00129-9

    Article  Google Scholar 

  14. Lamme V A. The neurophysiology of figure-ground segregation in primary visual cortex. J Neurosci, 1995, 15: 1605–1615, 7869121, 1:CAS:528:DyaK2MXjvVCgur0%3D

    CAS  PubMed  Google Scholar 

  15. Knierim J J, van Essen D C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol, 1992, 67: 961–980, 1588394, 1:STN:280:DyaK383mvV2ktA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  16. Walker G A, Ohzawa I, Freeman R D. Asymmetric suppression outside the classical receptive field of the visual cortex. J Neurosci, 1999, 19: 10536–10553, 10575050, 1:CAS:528:DyaK1MXnslyrur8%3D

    CAS  PubMed  Google Scholar 

  17. Rivest J, Boutet I, Intriligator J. Perceptual learning of orientation discrimination by more than one attribute. Vision Res, 1997, 37: 273–281, 10.1016/S0042-6989(96)00168-X, 9135861, 1:STN:280:DyaK2s3otFGmsQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  18. Walker P, Powell D J. Lateral interaction between neural channels sensitive to velocity in the human visual system. Nature, 1974, 252: 732–733, 10.1038/252732a0, 4437629, 1:STN:280:DyaE2M%2FmsVWmtw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  19. Tynan P, Sekuler R. Simultaneous motion contrast: velocity, sensitivity and depth response. Vision Res, 1975, 15: 1231–1238, 10.1016/0042-6989(75)90167-4, 1198935, 1:STN:280:DyaE28%2Fot1yksA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  20. Nelson J I, Frost B J. Orientation-selective inhibition from beyond the classic visual receptive field. Brain Res, 1978, 139: 359–365, 10.1016/0006-8993(78)90937-X, 624064, 1:STN:280:DyaE1c7gsVyguw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  21. Sillito A M, Grieve K L, Jones H E, et al. Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 1995, 378: 492–496, 10.1038/378492a0, 7477405, 1:CAS:528:DyaK2MXps1ymu78%3D

    Article  CAS  PubMed  Google Scholar 

  22. Müller J R, Metha A B, Krauskopf J, et al. Local signals from beyond the receptive fields of striate cortical neurons. J Neurophysiol, 2003, 90: 822–831, 10.1152/jn.00005.2003, 12724358

    Article  PubMed  Google Scholar 

  23. Ringach D L, Hawken M J, Shapley R. Dynamics of orientation tuning in macaque primary visual cortex. Nature, 1997, 387: 281–284, 10.1038/387281a0, 9153392, 1:CAS:528:DyaK2sXjtlSgsb4%3D

    Article  CAS  PubMed  Google Scholar 

  24. Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287: 1273–1276, 10.1126/science.287.5456.1273, 10678835, 1:CAS:528:DC%2BD3cXhtlOqsbo%3D

    Article  CAS  PubMed  Google Scholar 

  25. Hubel D H, Wiesel T N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci, 1977, 198: 1–59, 10.1098/rspb.1977.0085, 20635, 1:STN:280:DyaE1c%2Fht1CitA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  26. Sceniak M P, Ringach D L, Hawken M J, et al. Contrast’s effect on spatial summation by macaque V1 neurons. Nat Neurosci, 1999, 2: 733–739, 10.1038/11197, 10412063, 1:CAS:528:DyaK1MXkvVGrsbc%3D

    Article  CAS  PubMed  Google Scholar 

  27. Kapadia M K, Westheimer G, Gilbert C D. Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc Natl Acad Sci USA, 1999, 96: 12073–12078, 10.1073/pnas.96.21.12073, 10518578, 1:CAS:528:DyaK1MXmvVGjtr8%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fang F, Boyaci H, Kersten D, et al. Attention-dependent representation of a size illusion in human V1. Curr Biol, 2008, 18: 1707–1712, 10.1016/j.cub.2008.09.025, 18993076, 1:CAS:528:DC%2BD1cXhtlGmtrnJ

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fang F, Kersten D, Murray S O. Perceptual grouping and inverse fMRI activity patterns in human visual cortex. J Vis, 2008, 8: 2 1–9

    Google Scholar 

  30. Fang F, Boyaci H, Kersten D. Border ownership selectivity in human early visual cortex and its modulation by attention. Journal of Neuroscience, 2009, 29: 460–465, 10.1523/JNEUROSCI.4628-08.2009, 19144846, 1:CAS:528:DC%2BD1MXhtVKru7w%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shou T, Ruan D, Zhou Y. The orientation bias of LGN neurons shows topographic relation to area centralis in the cat retina. Exp Brain Res, 1986, 64: 233–236, 10.1007/BF00238218, 3770112, 1:STN:280:DyaL2s%2FjtVOjtw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  32. Shou T D, Leventhal A G. Organized arrangement of orientation-sensitive relay cells in the cat’s dorsal lateral geniculate nucleus. J Neurosci, 1989, 9: 4287–4302, 2593002, 1:STN:280:DyaK3c%2FnvFGntg%3D%3D

    CAS  PubMed  Google Scholar 

  33. Shou T, Leventhal A G, Thompson K G, et al. Direction biases of X and Y type retinal ganglion cells in the cat. J Neurophysiol, 1995, 73: 1414–1421, 7643156, 1:STN:280:DyaK2MzntVyktg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  34. Zhan X, Shou T. Anatomical evidence of subcortical contributions to the orientation selectivity and columns of the cat’s primary visual cortex. Neurosci Lett, 2002, 324: 247–251, 10.1016/S0304-3940(02)00205-7, 12009533, 1:CAS:528:DC%2BD38XjsFyhu70%3D

    Article  CAS  PubMed  Google Scholar 

  35. Yu H, Chen X, Sun C, et al. Global evaluation of contributions of GABA A, AMPA and NMDA receptors to orientation maps in cat’s visual cortex. Neuroimage, 2008, 40: 776–787, 10.1016/j.neuroimage.2007.12.014, 18234510

    Article  PubMed  Google Scholar 

  36. Angelucci A, Levitt J B, Lund J S. et al. Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Prog Brain Res, 2002, 136373-388

  37. Huang L, Shou T, Chen X, et al. Slab-like functional architecture of higher order cortical area 21a showing oblique effect of orientation preference in the cat. Neuroimage, 2006, 32: 1365–1374, 10.1016/j.neuroimage.2006.05.007, 16798018

    Article  PubMed  Google Scholar 

  38. Huang L, Chen X, Shou T. Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat. Brain Res, 2004, 998: 194–201, 10.1016/j.brainres.2003.11.024, 14751590, 1:CAS:528:DC%2BD2cXntVyktA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  39. Liang Z, Shen W, Shou T. Enhancement of oblique effect in the cat’s primary visual cortex via orientation preference shifting induced by excitatory feedback from higher-order cortical area 21a. Neuroscience, 2007, 145: 377–383, 10.1016/j.neuroscience.2006.11.051, 17223276, 1:CAS:528:DC%2BD2sXhvVGmsb4%3D

    Article  CAS  PubMed  Google Scholar 

  40. Shen W, Liang Z, Shou T. Weakened feedback abolishes neural oblique effect evoked by pseudo-natural visual stimuli in area 17 of the cat. Neurosci Lett, 2008, 437: 65–70, 10.1016/j.neulet.2008.03.054, 18420348, 1:CAS:528:DC%2BD1cXlsF2rt7w%3D

    Article  CAS  PubMed  Google Scholar 

  41. Shen W, Liang Z, Chen X, et al. Posteromedial lateral suprasylvian motion area modulates direction but not orientation preference in area 17 of cats. Neuroscience, 2006, 142: 905–916, 10.1016/j.neuroscience.2006.06.046, 16890373, 1:CAS:528:DC%2BD28XhtVGiu7zL

    Article  CAS  PubMed  Google Scholar 

  42. Mishkin M, Ungerleider L G. Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res, 1982, 6: 57–77, 10.1016/0166-4328(82)90081-X, 7126325, 1:STN:280:DyaL3s%2Fit1KntQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  43. Ettlinger G. “Object vision” and “spatial vision”: the neuropsychological evidence for the distinction. Cortex, 1990, 26: 319–341, 2123426, 1:STN:280:DyaK3M%2FmsV2rtg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  44. Goodale M A, Milner A D. Separate visual pathways for perception and action. Trends Neurosci, 1992, 15: 20–25, 10.1016/0166-2236(92)90344-8, 1374953, 1:STN:280:DyaK383mtlGhtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  45. Zhuo Y, Zhou T G, Rao H Y, et al. Contributions of the visual ventral pathway to long-range apparent motion. Science, 2003, 299: 417–420, 10.1126/science.1077091, 12532023, 1:CAS:528:DC%2BD3sXjsF2rug%3D%3D

    Article  CAS  PubMed  Google Scholar 

  46. Lueck C J, Zeki S, Friston K J, et al. The colour centre in the cerebral cortex of man. Nature, 1989, 340: 386–389, 10.1038/340386a0, 2787893, 1:STN:280:DyaL1MzjtVGlsw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  47. Tootell R B, Reppas J B, Kwong K K, et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci, 1995, 15: 3215–3230, 7722658, 1:CAS:528:DyaK2MXltVOitLo%3D

    CAS  PubMed  Google Scholar 

  48. Zeki S, Watson J D, Frackowiak R S. Going beyond the information given: the relation of illusory visual motion to brain activity. Proc Biol Sci, 1993, 252: 215–222, 10.1098/rspb.1993.0068, 8394582, 1:STN:280:DyaK3szlsV2gtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  49. Tootell R B, Reppas J B, Dale A M, et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature, 1995, 375: 139–141, 10.1038/375139a0, 7753168, 1:CAS:528:DyaK2MXls1Wisrw%3D

    Article  CAS  PubMed  Google Scholar 

  50. Palmer S E. Vision Science: Photons to Phenomenology. 1999, MIT Press

  51. Chen L. Topological structure in the perception of apparent motion. Perception, 1985, 14: 197–208, 10.1068/p140197, 4069950, 1:STN:280:DyaL28%2FmslSksQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  52. Lu Z L, Sperling G. The functional architecture of human visual motion perception. Vision Res, 1995, 35: 2697–2722, 10.1016/0042-6989(95)00025-U, 7483311, 1:STN:280:DyaK28%2FkvVahsA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  53. Chen L. Topological structure in visual perception. Science, 1982, 218: 699–700, 10.1126/science.7134969, 7134969, 1:STN:280:DyaL3s%2FktFartQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  54. Chen L. Perceptual organization: To reverse back the inverted (upside- down) question of feature binding. Visual Cognition, 2001, 8: 287–303, 10.1080/13506280143000016

    Article  Google Scholar 

  55. Payne B R. Evidence for visual cortical area homologs in cat and macaque monkey. Cereb Cortex, 1993, 3: 1–25, 10.1093/cercor/3.1.1, 8439738, 1:STN:280:DyaK3s7nslWqtQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  56. Dreher B, Wang C, Turlejski K J, et al. Areas PMLS and 21a of cat visual cortex: two functionally distinct areas. Cereb Cortex, 1996, 6: 585–599, 10.1093/cercor/6.4.585, 8670684, 1:STN:280:DyaK28zisVeisA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  57. Li B, Chen Y, Li B W, et al. Pattern and component motion selectivity in cortical area PMLS of the cat. Eur J Neurosci, 2001, 14: 690–700, 10.1046/j.0953-816x.2001.01689.x, 11556893, 1:STN:280:DC%2BD3MrhtVSnsg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  58. Li B, Li B W, Chen Y, et al. Response properties of PMLS and PLLS neurons to simulated optic flow patterns. Eur J Neurosci, 2000, 12: 1534–1544, 10.1046/j.1460-9568.2000.00038.x, 10792431, 1:STN:280:DC%2BD3c3lt12isw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  59. Chen H, Li B, Diao Y C. Response properties of neurons in cat dorsal lateral suprasylvian cortex to optic flow fields. Neuroreport, 2004, 15: 1019–1023, 10.1097/00001756-200404290-00017, 15076726

    Article  PubMed  Google Scholar 

  60. Xu Y, Li B, Li B W, Adaptation of PMLS neurons to prolonged optic flow stimuli. Neuroreport, 2001, 12: 4055–4059, 10.1097/00001756-200112210-00039, 11742237, 1:STN:280:DC%2BD3MjgtFalug%3D%3D

    Article  CAS  PubMed  Google Scholar 

  61. Kuai S G, Zhang J Y, Klein S A, et al. The essential role of stimulus temporal patterning in enabling perceptual learning. Nat Neurosci, 2005, 8: 1497–1499, 10.1038/nn1546, 16222233, 1:CAS:528:DC%2BD2MXhtFCrurjJ

    Article  CAS  PubMed  Google Scholar 

  62. Zhang J Y, Kuai S G, Xiao L Q, et al. Stimulus coding rules for perceptual learning. PLoS Biol, 2008, 6: 1651–1660, 10.1371/journal.pbio.0060197, 1:CAS:528:DC%2BD1cXhtV2rtbbP

    Article  CAS  Google Scholar 

  63. Xiao L Q, Zhang J Y, Wang R, et al. Complete transfer of perceptual learning across retinal locations enabled by double training. Curr Biol, 2008, 18: 1922–1926, 10.1016/j.cub.2008.10.030, 19062277, 1:CAS:528:DC%2BD1cXhsFamtL3E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li W, Piëch V, Gilbert C D. Learning to Link Visual Contours. Neuron, 2008, 57: 442–451, 10.1016/j.neuron.2007.12.011, 18255036, 1:CAS:528:DC%2BD1cXit1Snsbk%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang Y, Zhou Y, Ma Y, et al. Degradation of signal timing in cortical areas V1 and V2 of senescent monkeys. Cereb Cortex, 2005, 15: 403–408, 10.1093/cercor/bhh143, 15749984

    Article  PubMed  Google Scholar 

  66. Yu S, Wang Y, Li X, et al. Functional degradation of extrastriate visual cortex in senescent rhesus monkeys. Neuroscience, 2006, 140: 1023–1029, 10.1016/j.neuroscience.2006.01.015, 16678974, 1:CAS:528:DC%2BD28Xlt1Sjsbw%3D

    Article  CAS  PubMed  Google Scholar 

  67. Liang Z, Yang Y, Li G, et al. Aging affects the direction selectivity of MT cells in rhesus monkeys. Neurobiol Aging, 2008

  68. Yang Y, Liang Z, Li G, et al. Aging affects contrast response functions and adaptation of middle temporal visual area neurons in rhesus monkeys. Neuroscience, 2008, 156: 748–757, 10.1016/j.neuroscience.2008.08.007, 18775477, 1:CAS:528:DC%2BD1cXht1egu7zE

    Article  CAS  PubMed  Google Scholar 

  69. Yang Y, Zhang J, Liang Z, et al. Aging Affects the Neural Representation of Speed in Macaque Area MT. Cereb Cortex, 2008

  70. Barnes G R, Hess R F, Dumoulin S O, et al. The cortical deficit in humans with strabismic amblyopia. J Physiol, 2001, 533(Pt 1): 281–297, 10.1111/j.1469-7793.2001.0281b.x, 11351035, 1:CAS:528:DC%2BD3MXjslylt7w%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Daw N W. Critical periods and amblyopia. Arch Ophthalmol, 1998, 116(4): 502–505, 9565050, 1:STN:280:DyaK1c3isVOhsw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  72. Kiorpes L, McKee S P. Neural mechanisms underlying amblyopia. Curr Opin Neurobiol, 1999, 9: 480–486, 10.1016/S0959-4388(99)80072-5, 10448162, 1:CAS:528:DyaK1MXls1Sntrc%3D

    Article  CAS  PubMed  Google Scholar 

  73. Greenwald M J, Parks M M. Cllinical Ophthalmology. In: Duane T D, ed. Amblyopia. New York: Harper & Row, 1999.

    Google Scholar 

  74. Fahle M. Perceptual learning: A case for early selection. J Vis, 2004, 4: 879–890, 10.1167/4.10.4, 15595892

    Article  PubMed  Google Scholar 

  75. Gilbert C D, Sigman M, Crist R E. The neural basis of perceptual learning. Neuron, 2001, 31: 681–697, 10.1016/S0896-6273(01)00424-X, 11567610, 1:CAS:528:DC%2BD3MXnt1OqsL8%3D

    Article  CAS  PubMed  Google Scholar 

  76. Campbell F W, Hess R F, Watson P G, et al. Preliminary results of a physiologically based treatment of amblyopia. Br J Ophthalmol, 1978, 62: 748–755, 10.1136/bjo.62.11.748, 718813, 1:STN:280:DyaE1M%2Fmt1Wmsw%3D%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou Y, Huang C, Xu P, et al. Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia. Vision Res, 2006, 46: 739–750, 10.1016/j.visres.2005.07.031, 16153674

    Article  PubMed  Google Scholar 

  78. Huang C B, Zhou Y, Lu Z L. Broad bandwidth of perceptual learning in the visual system of adults with anisometropic amblyopia. Proc Natl Acad Sci USA, 2008, 105: 4068–4073, 10.1073/pnas.0800824105, 18316716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Levi D M, Harwerth R S. Psychophysical mechanisms in humans with amblyopia. Am J Optom Physiol Opt, 1982, 59: 936–951, 7158652, 1:STN:280:DyaL3s7isVWktA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  80. Huang, C, et al. Treated amblyopes remain deficient in spatial vision: a contrast sensitivity and external noise study. Vision Res, 2007, 47: 22–34, 10.1016/j.visres.2006.09.015, 17098275

    Article  PubMed  Google Scholar 

  81. Cascairo M A, Mazow M D, Holladay J T, et al. Contrast visual acuity in treated amblyopia. Binocular Vision & Strabismus Quarterly, 1997, 12: 167–174

    Google Scholar 

  82. Rogers G L, Bremer D L, Leguire L E. The contrast sensitivity function and childhood amblyopia. Am J Ophthalmol, 1987, 104: 64–68, 3605281, 1:STN:280:DyaL2s3msl2nsg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  83. Regan D. Low-contrast visual acuity test for pediatric use. Can J Ophthalmol, 1988, 23: 224–227, 3179830, 1:STN:280:DyaL1M%2Fisl2isw%3D%3D

    CAS  PubMed  Google Scholar 

  84. Qiu Z, Xu P, Zhou Y, et al. Spatial vision deficit underlies poor sine-wave motion direction discrimination in anisometropic amblyopia. J Vis, 2007, 7: 7 1–16, 10.1167/7.11.7

    Article  Google Scholar 

  85. Hess R F, Anderson S J. Motion sensitivity and spatial undersampling in amblyopia. Vision Res, 1993, 33: 881–896, 10.1016/0042-6989(93)90071-4, 8506631, 1:STN:280:DyaK3s3ot1WhsA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  86. Chen X, Liang Z, Shen W, et al. Differential behavior of simple and complex cells in visual cortex during a brief IOP elevation. Invest Ophthalmol Vis Sci, 2005, 46: 2611–2619, 10.1167/iovs.04-0874, 15980255

    Article  PubMed  Google Scholar 

  87. Chen X, Sun C, Huang L, et al. Selective loss of orientation column maps in visual cortex during brief elevation of intraocular pressure. Invest Ophthalmol Vis Sci, 2003, 44: 435–441, 10.1167/iovs.02-0194, 12506106

    Article  PubMed  Google Scholar 

  88. Shou T D, Zhou Y F. Y cells in the cat retina are more tolerant than X cells to brief elevation of IOP. Invest Ophthalmol Vis Sci, 1989, 30: 2093–2098, 2793352, 1:STN:280:DyaK3c%2Fgsl2rtw%3D%3D

    CAS  PubMed  Google Scholar 

  89. Shou T, Zhou Y, Deng P, et al. IncrementaI IOP abolishing the response of cat LGN Y ce11s and X cells to flash stimulation of the eye. Chin J Physiol Sci, 1990, 6: 95–99

    Google Scholar 

  90. Zhou Y, Wang W, Ren B, et al. Receptive field properties of cat retinal ganglion cells during short-term IOP elevation. Invest Ophthalmol Vis Sci, 1994, 35: 2758–2764, 8188469, 1:STN:280:DyaK2c3ksFCltw%3D%3D

    CAS  PubMed  Google Scholar 

  91. Troy J B, Shou T. The receptive fields of cat retinal ganglion cells in physiological and pathological states: Where we are after half a century of research. Prog Retinal & Eye Res, 2002, 21: 263–302, 10.1016/S1350-9462(02)00002-2, 1:STN:280:DC%2BD38zhtVKmsg%3D%3D

    Article  CAS  Google Scholar 

  92. Shou T, Liu J, Wang W, et al. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci, 2003, 44: 3005–3010, 10.1167/iovs.02-0620, 12824245

    Article  PubMed  Google Scholar 

  93. Quigley H A, Sanchez R M, Dunkelberger G R, et al. Chronic glaucoma selectively damages large optic nerve fibers. Invest Ophthalmol Vis Sci, 1987, 28: 913–920, 3583630, 1:STN:280:DyaL2s3itFCiug%3D%3D

    CAS  PubMed  Google Scholar 

  94. Glovinsky Y, Quigley H A, Dunkelberger G R. et al. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci, 1991, 32: 484–491, 2001923, 1:STN:280:DyaK3M7mtFaktQ%3D%3D

    CAS  PubMed  Google Scholar 

  95. Yang Y, Cao P, Yang Y, et al. Corollary discharge circuits for saccadic modulation of the pigeon visual system. Nat Neurosci, 2008, 11: 595–602, 10.1038/nn.2107, 18391942, 1:CAS:528:DC%2BD1cXltFerurs%3D

    Article  PubMed  Google Scholar 

  96. Yang Y, Wang S R. Neuronal circuitry and discharge patterns controlling eye movements in the pigeon. J Neurosci, 2008, 28: 10772–10780, 10.1523/JNEUROSCI.2468-08.2008, 18923052, 1:CAS:528:DC%2BD1cXht1ymt7nO

    Article  CAS  PubMed  Google Scholar 

  97. Wu L Q, Niu Y Q, Yang J, et al. Tectal neurons signal impending collision of looming objects in the pigeon. Eur J Neurosci, 2005, 22: 2325–2331, 10.1111/j.1460-9568.2005.04397.x, 16262670

    Article  PubMed  Google Scholar 

  98. Niu Y Q, Xiao Q, Liu R F, et al. Response characteristics of the pigeon’s pretectal neurons to illusory contours and motion. J Physiol, 2006, 577(Pt 3): 805–813, 10.1113/jphysiol.2006.120071, 17038429, 1:CAS:528:DC%2BD2sXpsV2isA%3D%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li D P, Xiao Q, Wang S R. et al. Feedforward construction of the receptive field and orientation selectivity of visual neurons in the pigeon. Cereb Cortex, 2007, 17: 885–893, 10.1093/cercor/bhk043, 16723406, 1:CAS:528:DC%2BD1cXpvVGitb4%3D

    Article  CAS  PubMed  Google Scholar 

  100. Hu J, Li S, Xiao Q, et al. Tecto-isthmo-optic transmission in pigeons is mediated by glutamate and nitric oxide. Brain Res Bull, 2001, 54: 399–403, 10.1016/S0361-9230(00)00461-5, 11306192, 1:CAS:528:DC%2BD3MXisF2qtLg%3D

    Article  CAS  PubMed  Google Scholar 

  101. Tan Z, Yao H. The spatiotemporal frequency tuning of LGN receptive field facilitates neural discrimination of natural stimuli. J Neurosci, 2009, 29: 11409–11416, 10.1523/JNEUROSCI.1268-09.2009, 19741147, 1:CAS:528:DC%2BD1MXhtFOhu7jL

    Article  CAS  PubMed  Google Scholar 

  102. Wang W, Jones H E, Andolina I M, et al. Functional alignment of feedback effects from visual cortex to thalamus. Nat Neurosci, 2006, 9: 1330–1336, 10.1038/nn1768, 16980966, 1:CAS:528:DC%2BD28XhtVSgu7bL

    Article  CAS  PubMed  Google Scholar 

  103. Andolina I M, Jones H E, Wang W, et al. Corticothalamic feedback enhances stimulus response precision in the visual system. Proc Natl Acad Sci USA, 2007, 104: 1685–1690, 10.1073/pnas.0609318104, 17237220, 1:CAS:528:DC%2BD2sXhslCqtLg%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sillito A M, Jones H E. Corticothalamic interactions in the transfer of visual information. Philos Trans R Soc Lond B Biol Sci, 2002, 357: 1739–1752, 10.1098/rstb.2002.1170, 12626008

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schiessl I, Wang W, McLoughlin N. Independent components of the haemodynamic response in intrinsic optical imaging. Neuroimage, 2008, 39: 634–646, 10.1016/j.neuroimage.2007.09.022, 17959391

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HaiShan Yao, HaiDong Lu or Wei Wang.

Additional information

Contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, H., Lu, H. & Wang, W. Visual neuroscience research in China. Sci. China Life Sci. 53, 363–373 (2010). https://doi.org/10.1007/s11427-010-0071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0071-y

Keywords

Navigation