Skip to main content
Log in

Synapse formation and remodeling

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Synapses are specialized structures that mediate information flow between neurons and target cells, and thus are the basis for neuronal system to execute various functions, including learning and memory. There are around 1011 neurons in the human brain, with each neuron receiving thousands of synaptic inputs, either excitatory or inhibitory. A synapse is an asymmetric structure that is composed of pre-synaptic axon terminals, synaptic cleft, and postsynaptic compartments. Synapse formation involves a number of cell adhesion molecules, extracellular factors, and intracellular signaling or structural proteins. After the establishment of synaptic connections, synapses undergo structural or functional changes, known as synaptic plasticity which is believed to be regulated by neuronal activity and a variety of secreted factors. This review summarizes recent progress in the field of synapse development, with particular emphasis on the work carried out in China during the past 10 years (1999–2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall Z W, Sanes J R. Synaptic structure and development: the neuromuscular junction. Cell, 1993, 72Suppl: 99–121, 10.1016/S0092-8674(05)80031-5, 8428377

    Article  PubMed  Google Scholar 

  2. Sanes J R, Lichtman J W. Development of the vertebrate neuromuscular junction. Annu Rev Neurosci, 1999, 22: 389–442, 10.1146/annurev.neuro.22.1.389, 10202544, 1:CAS:528:DyaK1MXhvFems7o%3D

    Article  CAS  PubMed  Google Scholar 

  3. Sanes J R, Lichtman J W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci, 2001, 2: 791–805, 10.1038/35097557, 11715056, 1:CAS:528:DC%2BD38Xmt1WitL0%3D

    Article  CAS  PubMed  Google Scholar 

  4. Burden S J. The formation of neuromuscular synapses. Genes Dev, 1998, 12: 133–148, 10.1101/gad.12.2.133, 9436975, 1:CAS:528:DyaK1cXnsVOrtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  5. Colledge M, Froehner S C. To muster a cluster: anchoring neurotransmitter receptors at synapses. Proc Natl Acad Sci USA, 1998, 95: 3341–33343, 10.1073/pnas.95.7.3341, 9520364, 1:CAS:528:DyaK1cXitlGqur8%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fallon J R, Hall Z W. Building synapses: Agrin and dystroglycan stick together. Trends Neurosci, 1994, 17: 469–473, 10.1016/0166-2236(94)90135-X, 7531888, 1:CAS:528:DyaK2MXhvV2js74%3D

    Article  CAS  PubMed  Google Scholar 

  7. Ferns M, Carbonetto S. Challenging the neurocentric view of neuromuscular synapse formation. Neuron, 2001. m30: 311–314, 10.1016/S0896-6273(01)00311-7

    Article  Google Scholar 

  8. Lin W, Burgess R W, Dominguez B, et al. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature, 2001, 410: 1057–1064, 10.1038/35074025, 11323662, 1:CAS:528:DC%2BD3MXjsVCksLs%3D

    Article  CAS  PubMed  Google Scholar 

  9. Yang X, Arber S, William C, et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron, 2001, 30: 399–410, 10.1016/S0896-6273(01)00287-2, 11395002, 1:CAS:528:DC%2BD3MXktFeitr0%3D

    Article  CAS  PubMed  Google Scholar 

  10. Yang X, Li W, Prescott E D, et al. DNA topoisomerase IIbeta and neural development. Science, 2000, 287: 131–134, 10.1126/science.287.5450.131, 10615047, 1:CAS:528:DC%2BD3cXis1CitA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  11. Gautam M, Noakes P G, Moscoso L, et al. Defective neuromuscular synaptogenesis in Agrin-deficient mutant mice. Cell, 1996, 85: 525–535, 10.1016/S0092-8674(00)81253-2, 8653788, 1:CAS:528:DyaK28XjtFyit7w%3D

    Article  CAS  PubMed  Google Scholar 

  12. Ruegg M A, Bixby J L. Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci, 1998, 21: 22–27, 10.1016/S0166-2236(97)01154-5, 9464682, 1:CAS:528:DyaK1cXhtlGgtw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  13. Kim N, Stiegler A L, Cameron T O, et al. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell, 2008, 135: 334–342, 10.1016/j.cell.2008.10.002, 18848351, 1:CAS:528:DC%2BD1cXhtlWhsrzK

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang B, Luo S, Wang Q, et al. LRP4 serves as a coreceptor of Agrin. Neuron, 2008, 60: 285–297, 10.1016/j.neuron.2008.10.006, 18957220, 1:CAS:528:DC%2BD1cXhtlCgtrjI

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo Z G, Wang Q, Zhou J Z, et al. Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron, 2002, 35: 489–505, 10.1016/S0896-6273(02)00783-3, 12165471, 1:CAS:528:DC%2BD38Xmt12is74%3D

    Article  CAS  PubMed  Google Scholar 

  16. Luo Z G, Je H S, Wang Q, et al. Implication of geranylgeranyltrans-ferase I in synapse formation. Neuron, 2003, 40: 703–717, 10.1016/S0896-6273(03)00695-0, 14622576, 1:CAS:528:DC%2BD3sXpt1ymur4%3D

    Article  CAS  PubMed  Google Scholar 

  17. Okada K, Inoue A, Okada M, et al. The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science, 2006, 312: 1802–1805, 10.1126/science.1127142, 16794080, 1:CAS:528:DC%2BD28XmtVSnt7k%3D

    Article  CAS  PubMed  Google Scholar 

  18. Finn A J, Feng G, Pendergast A M. Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction. Nat Neurosci, 2003, 6: 717–723, 10.1038/nn1071, 12796783, 1:CAS:528:DC%2BD3sXkvVKmtLo%3D

    Article  CAS  PubMed  Google Scholar 

  19. Weston C, Yee B, Hod E, et al. Agrin-induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42. J Cell Biol, 2000, 150: 205–212, 10.1083/jcb.150.1.205, 10893268, 1:CAS:528:DC%2BD3cXltVGhtrY%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin W, Dominguez B, Yang J, et al. Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a CDK5-dependent mechanism. Neuron, 2005, 46: 569–579, 10.1016/j.neuron.2005.04.002, 15944126, 1:CAS:528:DC%2BD2MXkslyktbk%3D

    Article  CAS  PubMed  Google Scholar 

  21. Misgeld T, Kummer T T, Lichtman J W, et al. Agrin promotes synaptic differentiation by counteracting an inhibitory effect of neurotransmitter. Proc Natl Acad Sci USA, 2005, 102: 11088–11093, 10.1073/pnas.0504806102, 16043708, 1:CAS:528:DC%2BD2MXnvVWju7c%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Misgeld T, Burgess R W, Lewis R M, et al. Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase. Neuron, 2002, 36: 635–648, 10.1016/S0896-6273(02)01020-6, 12441053, 1:CAS:528:DC%2BD38Xpt1Kgs78%3D

    Article  CAS  PubMed  Google Scholar 

  23. Brandon E P, Lin W, D’Amour K A, et al. Aberrant patterning of neuromuscular synapses in choline acetyltransferase-deficient mice. J Neurosci, 2003, 23: 539–549, 12533614, 1:CAS:528:DC%2BD3sXovV2mug%3D%3D

    CAS  PubMed  Google Scholar 

  24. Burgess R W, Nguyen Q T, Son Y J, et al. Alternatively spliced isoforms of nerve- and muscle-derived Agrin: their roles at the neuromuscular junction. Neuron, 1999, 23: 33–44, 10.1016/S0896-6273(00)80751-5, 10402191, 1:CAS:528:DyaK1MXjvVSjtLc%3D

    Article  CAS  PubMed  Google Scholar 

  25. Fu A K, Ip F C, Fu W Y, et al. Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc Natl Acad Sci USA, 2005, 102: 15224–15229, 10.1073/pnas.0507678102, 16203963, 1:CAS:528:DC%2BD2MXhtFGqtbrL

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen F, Qian L, Yang Z H, et al. Rapsyn interaction with Calpain stabilizes AChR clusters at the neuromuscular junction. Neuron, 2007, 55: 247–260, 10.1016/j.neuron.2007.06.031, 17640526, 1:CAS:528:DC%2BD2sXoslSis70%3D

    Article  CAS  PubMed  Google Scholar 

  27. Gervásio O L, Armson P F, Phillips W D. Developmental increase in the amount of Rapsyn per acetylcholine receptor promotes postsynaptic receptor packing and stability. Dev Biol, 2007, 305: 262–275, 10.1016/j.ydbio.2007.02.008, 17362913, 1:CAS:528:DC%2BD2sXksV2lu7o%3D

    Article  PubMed  Google Scholar 

  28. Froehner S C. The submembrane machinery for nicotinic acetylcholine receptor clustering. J Cell Biol, 1991, 114: 1–7, 10.1083/jcb.114.1.1, 2050736, 1:CAS:528:DyaK3MXksVaisr4%3D

    Article  CAS  PubMed  Google Scholar 

  29. Apel E D, Glass D J, Moscoso L M, et al. Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron, 1997, 18: 623–635, 10.1016/S0896-6273(00)80303-7, 9136771, 1:CAS:528:DyaK2sXjtVSitLY%3D

    Article  CAS  PubMed  Google Scholar 

  30. Fuhrer C, Gautam M, Sugiyama J E. Roles of Rapsyn and Agrin in interaction of postsynaptic proteins with acetylcholine receptors. J Neurosci, 1999, 19: 6405–6416, 10414969, 1:CAS:528:DyaK1MXkslCqsbs%3D

    CAS  PubMed  Google Scholar 

  31. Han H, Noakes P G, Phillips W D. Overexpression of Rapsyn inhibits Agrin-induced acetylcholine receptor clustering in muscle cells. J Neurocytol, 1999, 28: 763–775, 10.1023/A:1007098406748, 10859577, 1:CAS:528:DC%2BD3cXmtVeqtL0%3D

    Article  CAS  PubMed  Google Scholar 

  32. Phillips W D, Vladeta D, Han H, et al. Rapsyn and Agrin slow the metabolic degradation of the acetylcholine receptor. Mol Cell Neurosci, 1997, 10: 16–26, 10.1006/mcne.1997.0634, 9361285, 1:CAS:528:DyaK2sXntFertr4%3D

    Article  CAS  PubMed  Google Scholar 

  33. Goll D E, Thompson V F, Li H, et al. The Calpain system. Physiol Rev, 2003, 83: 731–801, 12843408, 1:CAS:528:DC%2BD3sXmtVGmsL8%3D

    Article  CAS  PubMed  Google Scholar 

  34. Staubli U, Larson J, Thibault O, et al. Chronic administration of a thiol-proteinase inhibitor blocks long-term potentiation of synaptic responses. Brain Res, 1988, 444: 153–158, 10.1016/0006-8993(88)90922-5, 2834021, 1:CAS:528:DyaL1cXhs1Ggtbw%3D

    Article  CAS  PubMed  Google Scholar 

  35. Oliver M W, Baudry M, Lynch G. The protease inhibitor leupeptin interferes with the development of LTP in hippocampal slices. Brain Res, 1989, 505: 233–238, 10.1016/0006-8993(89)91448-0, 2598041, 1:CAS:528:DyaK3cXmvF2gtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  36. Carafoli E, Molinari M. Calpain: a protease in search of a function? Biochem Biophys Res Commun, 1998, 247: 193–203, 10.1006/bbrc.1998.8378, 9642102, 1:CAS:528:DyaK1cXkt1Sktrk%3D

    Article  CAS  PubMed  Google Scholar 

  37. Patrick G N, Zukerberg L, Nikolic M, et al. Conversion of p35 to p25 deregulates CDK5 activity and promotes neurodegeneration. Nature, 1999, 402: 615–622, 10.1038/45159, 10604467, 1:CAS:528:DC%2BD3cXjsVGq

    Article  CAS  PubMed  Google Scholar 

  38. Nixon R A. A “protease activation cascade” in the pathogenesis of Alzheimer’s disease. Ann N Y Acad Sci, 2000, 924: 117–131, 11193788, 1:CAS:528:DC%2BD3MXntVejtA%3D%3D, 10.1111/j.1749-6632.2000.tb05570.x

    Article  CAS  PubMed  Google Scholar 

  39. Lee M S, Kwon Y T, Li M, et al. Neurotoxicity induces cleavage of p35 to p25 by Calpain. Nature, 2000, 405: 360–364, 10.1038/35012636, 10830966, 1:CAS:528:DC%2BD3cXjs1Kqsrk%3D

    Article  CAS  PubMed  Google Scholar 

  40. Madhavan R, Peng H B. HGF induction of postsynaptic specializations at the neuromuscular junction. J Neurobiol, 2006, 66: 134–147, 10.1002/neu.20206, 16215993, 1:CAS:528:DC%2BD28XhsFGhs7k%3D

    Article  CAS  PubMed  Google Scholar 

  41. Lee C W, Peng H B. Mitochondrial clustering at the vertebrate neuromuscular junction during presynaptic differentiation. J Neurobiol, 2006, 66: 522–536, 10.1002/neu.20245, 16555236, 1:CAS:528:DC%2BD28XlsFajsrs%3D

    Article  CAS  PubMed  Google Scholar 

  42. Lee C W, Peng H B. The function of mitochondria in presynaptic development at the neuromuscular junction. Mol Biol Cell, 2008, 19: 150–158, 10.1091/mbc.E07-05-0515, 17942598, 1:CAS:528:DC%2BD1cXlslensbw%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sandrock A W Jr, Dryer S E, Rosen K M, et al. Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science, 1997, 276: 599–603, 10.1126/science.276.5312.599, 9110980

    Article  PubMed  Google Scholar 

  44. Fu A K, Fu W Y, Cheung J, et al. CDK5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat Neurosci, 2001, 4: 374–381, 10.1038/86019, 11276227, 1:CAS:528:DC%2BD3MXitlKjs7k%3D

    Article  CAS  PubMed  Google Scholar 

  45. Trinidad J C, Cohen J B. Neuregulin inhibits acetylcholine receptor aggregation in myotubes. J Biol Chem, 2004, 279: 31622–31628, 10.1074/jbc.M400044200, 15155732, 1:CAS:528:DC%2BD2cXlslOrtrs%3D

    Article  CAS  PubMed  Google Scholar 

  46. Jan Y N, Jan L Y. The control of dendrite development. Neuron, 2003, 40: 229–242, 10.1016/S0896-6273(03)00631-7, 14556706, 1:CAS:528:DC%2BD3sXosFCqsr4%3D

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, Ghosh A. Regulation of dendritic development by neuronal activity. J Neurobiol, 2005, 64: 4–10, 10.1002/neu.20150, 15884010, 1:CAS:528:DC%2BD2MXlslyhurY%3D

    Article  CAS  PubMed  Google Scholar 

  48. Hancock J F, Magee A I, Childs J E, et al. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell, 1989, 57: 1167–1177, 10.1016/0092-8674(89)90054-8, 2661017, 1:CAS:528:DyaL1MXkvFansr8%3D

    Article  CAS  PubMed  Google Scholar 

  49. Zhang F L, Casey P J. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem, 1996, 65: 241–269, 10.1146/annurev.bi.65.070196.001325, 8811180, 1:CAS:528:DyaK28XktFamtL0%3D

    Article  CAS  PubMed  Google Scholar 

  50. Yokoyama K, Goodwin G W, Ghomashchi F, et al. A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity. Proc Natl Acad Sci USA, 1991, 88: 5302–5306, 10.1073/pnas.88.12.5302, 2052607, 1:CAS:528:DyaK3MXltV2jtLc%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou X P, Wu K Y, Liang B, et al. TrkB-mediated activation of geranylgeranyltransferase I promotes dendritic morphogenesis. Proc Natl Acad Sci USA, 2008, 105: 17181–17186, 10.1073/pnas.0800846105, 18957540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li S, Zhang C, Takemori H, et al. TORC1 regulates activity-dependent CREB-target gene transcription and dendritic growth of developing cortical neurons. J Neurosci, 2009, 29: 2334–2343, 10.1523/JNEUROSCI.2296-08.2009, 19244510, 1:CAS:528:DC%2BD1MXislWhtb4%3D

    Article  CAS  PubMed  Google Scholar 

  53. Ji Y, Pang P T, Feng L, et al. Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat Neurosci, 2005, 8: 164–172, 10.1038/nn1381, 15665879, 1:CAS:528:DC%2BD2MXnslKmug%3D%3D

    Article  CAS  PubMed  Google Scholar 

  54. Jia Y, Zhou J, Tai Y, et al. TRPC channels promote cerebellar granule neuron survival. Nat Neurosci, 2007, 10: 559–567, 10.1038/nn1870, 17396124, 1:CAS:528:DC%2BD2sXksFShs7Y%3D

    Article  CAS  PubMed  Google Scholar 

  55. Zhou J, Du W, Zhou K, et al. Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci, 2008, 11: 741–743, 10.1038/nn.2127, 18516035, 1:CAS:528:DC%2BD1cXns1Onurk%3D

    Article  CAS  PubMed  Google Scholar 

  56. Irie F, Yamaguchi Y. EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nat Neurosci, 2002, 5: 1117–1118, 10.1038/nn964, 12389031, 1:CAS:528:DC%2BD38Xot1ansb8%3D

    Article  CAS  PubMed  Google Scholar 

  57. Penzes P, Beeser A, Chernoff J, et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron, 2003, 37: 263–274, 10.1016/S0896-6273(02)01168-6, 12546821, 1:CAS:528:DC%2BD3sXhtV2it7w%3D

    Article  CAS  PubMed  Google Scholar 

  58. Fu W Y, Chen Y, Sahin M, et al. CDK5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci, 2007, 10: 67–76, 10.1038/nn1811, 17143272, 1:CAS:528:DC%2BD28XhtlCrt7bE

    Article  CAS  PubMed  Google Scholar 

  59. Lee S H, Sheng M. Development of neuron-neuron synapses. Curr Opin Neurobiol, 2000, 10: 125–131, 10.1016/S0959-4388(99)00046-X, 10679427, 1:CAS:528:DC%2BD3cXhslKrsrY%3D

    Article  CAS  PubMed  Google Scholar 

  60. Renger J J, Egles C, Liu G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron, 2001, 29: 469–484, 10.1016/S0896-6273(01)00219-7, 11239436, 1:CAS:528:DC%2BD3MXisleisr0%3D

    Article  CAS  PubMed  Google Scholar 

  61. Atwood H L, Wojtowicz J M. Silent synapses in neural plasticity: current evidence. Learn Mem, 1999, 6: 542–571, 10.1101/lm.6.6.542, 10641762, 1:STN:280:DC%2BD3c7gsVOhug%3D%3D

    Article  CAS  PubMed  Google Scholar 

  62. Nicoll R A, Expression mechanisms underlying long-term potentiation: a postsynaptic view. Philos Trans R Soc Lond B Biol Sci, 2003, 358: 721–726, 10.1098/rstb.2002.1228, 12740118, 1:CAS:528:DC%2BD3sXktlSrtbc%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Malinow R, Malenka R C. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci, 2002, 25: 103–126, 10.1146/annurev.neuro.25.112701.142758, 12052905, 1:CAS:528:DC%2BD38XmtF2hsLw%3D

    Article  CAS  PubMed  Google Scholar 

  64. Shen W, Wu B, Zhang Z, et al. Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron, 2006, 50: 401–414, 10.1016/j.neuron.2006.03.017, 16675395, 1:CAS:528:DC%2BD28XkvFSgsb0%3D

    Article  CAS  PubMed  Google Scholar 

  65. Jin W, Ge W P, Xu J, et al. Lipid binding regulates synaptic targeting of PICK1, AMPA receptor trafficking, and synaptic plasticity. J Neurosci, 2006, 26: 2380–2390, 10.1523/JNEUROSCI.3503-05.2006, 16510715, 1:CAS:528:DC%2BD28XislKrurY%3D

    Article  CAS  PubMed  Google Scholar 

  66. Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci, 2004, 5: 771–781, 10.1038/nrn1517, 15378037, 1:CAS:528:DC%2BD2cXns1Kiurk%3D

    Article  CAS  PubMed  Google Scholar 

  67. Hung A Y, Sheng M. PDZ domains: structural modules for protein complex assembly. J Biol Chem, 2002, 277: 5699–5702, 10.1074/jbc.R100065200, 11741967, 1:CAS:528:DC%2BD38XhvFyrs7o%3D

    Article  CAS  PubMed  Google Scholar 

  68. Feng W, Zhang M. Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci, 2009, 10: 87–99, 10.1038/nrn2540, 19153575, 1:CAS:528:DC%2BD1MXntFCqtw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  69. Long J F, Tochio H, Wang P, et al. Supramodular structure and synergistic target binding of the N-terminal tandem PDZ domains of PSD-95. J Mol Biol, 2003, 327: 203–214, 10.1016/S0022-2836(03)00113-X, 12614619, 1:CAS:528:DC%2BD3sXhsVCgu7c%3D

    Article  CAS  PubMed  Google Scholar 

  70. Feng W, Shi Y, Li M, et al. Tandem PDZ repeats in glutamate receptor-interacting proteins have a novel mode of PDZ domain-mediated target binding. Nat Struct Biol, 2003, 10: 972–978, 10.1038/nsb992, 14555997, 1:CAS:528:DC%2BD3sXosVCjtb8%3D

    Article  CAS  PubMed  Google Scholar 

  71. Long J F, Feng W, Wang R, et al. Autoinhibition of X11/Mint scaffold proteins revealed by the closed conformation of the PDZ tandem. Nat Struct Mol Biol, 2005, 12: 722–728, 10.1038/nsmb958, 16007100, 1:CAS:528:DC%2BD2MXmvVOiu7g%3D

    Article  CAS  PubMed  Google Scholar 

  72. Pan L, Wu H, Shen C, et al. Clustering and synaptic targeting of PICK1 requires direct interaction between the PDZ domain and lipid membranes. EMBO J, 2007, 26: 4576–4587, 10.1038/sj.emboj.7601860, 17914463, 1:CAS:528:DC%2BD2sXht1emtbfM

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu H, Feng W, Chen J, et al. PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell, 2007, 28: 886–898, 10.1016/j.molcel.2007.10.028, 18082612, 1:CAS:528:DC%2BD1cXktVWhtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  74. Jin S, Pan L, Liu Z, et al. Drosophila Tubulin-specific chaperone E functions at neuromuscular synapses and is required for microtubule network formation. Development, 2009, 136: 1571–1581, 10.1242/dev.029983, 19297412, 1:CAS:528:DC%2BD1MXntFaks74%3D

    Article  CAS  PubMed  Google Scholar 

  75. Ding M, Chao D, Wang G, et al. Spatial regulation of an E3 ubiquitin ligase directs selective synapse elimination. Science, 2007, 317: 947–951, 10.1126/science.1145727, 17626846, 1:CAS:528:DC%2BD2sXptVaju7Y%3D

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenGe Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Z. Synapse formation and remodeling. Sci. China Life Sci. 53, 315–321 (2010). https://doi.org/10.1007/s11427-010-0069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0069-5

Keywords

Navigation