Skip to main content
Log in

Axon guidance and neuronal migration research in China

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits. Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years. Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration. Several unique experimental approaches, including the migration assay of single isolated neurons in response to locally delivered guidance cues, have been developed by Chinese neuroscientists to investigate the molecular machinery underlying these guidance events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guan K L, Rao Y. Signalling mechanisms mediating neuronal responses to guidance cues. Nat Rev Neurosci, 2003, 4: 941–956, 10.1038/nrn1254, 14682358, 1:CAS:528:DC%2BD3sXpslalsbk%3D

    Article  CAS  PubMed  Google Scholar 

  2. Henley J, Poo M M. Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol, 2004, 14: 320–330, 10.1016/j.tcb.2004.04.006, 15183189, 1:CAS:528:DC%2BD2cXks1erur8%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guan C B, Xu H T, Jin M, et al. Long-range Ca2+ signaling from growth cone to soma mediates reversal of neuronal migration induced by slit-2. Cell, 2007, 129: 385–395, 10.1016/j.cell.2007.01.051, 17448996, 1:CAS:528:DC%2BD2sXlsVWls7c%3D

    Article  CAS  PubMed  Google Scholar 

  4. Xu H T, Yuan X B, Guan C B, et al. Calcium signaling in chemorepellant Slit2-dependent regulation of neuronal migration. Proc Natl Acad Sci USA, 2004, 101: 4296–4301, 10.1073/pnas.0303893101, 15020772, 1:CAS:528:DC%2BD2cXivFartbw%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gomez T M, Zheng J Q. The molecular basis for calcium-dependent axon pathfinding. Nat Rev Neurosci, 2006, 7: 115–125, 10.1038/nrn1844, 16429121, 1:CAS:528:DC%2BD28XlvV2qtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  6. Goodhill G J, Baier H. Axon guidance: Stretching gradients to the limit. Neural Comput, 1998, 10: 521–527, 10.1162/089976698300017638, 9527831, 1:STN:280:DyaK1c7pvFentw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  7. Harel N Y, Strittmatter S M. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci, 2006, 7: 603–616, 10.1038/nrn1957, 16858389, 1:CAS:528:DC%2BD28XntFCgsbY%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petros T J, Rebsam A, Mason C A. Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci, 2008, 31: 295–315, 10.1146/annurev.neuro.31.060407.125609, 18558857, 1:CAS:528:DC%2BD1cXpt12ns74%3D

    Article  CAS  PubMed  Google Scholar 

  9. Chan S O, Chung K Y. Changes in axon arrangement in the retinofugal [correction of retinofungal] pathway of mouse embryos: Confocal microscopy study using single- and double-dye label. J Comp Neurol, 1999, 406: 251–262, 10.1002/(SICI)1096-9861(19990405)406:2<251::AID-CNE8>3.0.CO;2-E, 10096609, 1:STN:280:DyaK1M7psVaksQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  10. Chan S O, Cheung W S, Lin L. Differential responses of temporal and nasal retinal neurites to regional-specific cues in the mouse retinofugal pathway. Cell Tissue Res, 2002, 309: 201–208, 10.1007/s00441-002-0595-y, 12172779, 1:STN:280:DC%2BD38vhslKgsQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  11. Chung K Y, Shum D K, Chan S O. Expression of chondroitin sulfate proteoglycans in the chiasm of mouse embryos. J Comp Neurol, 2000, 417: 153–163, 10.1002/(SICI)1096-9861(20000207)417:2<153::AID-CNE2>3.0.CO;2-D, 10660894, 1:CAS:528:DC%2BD3cXmsVKkuw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  12. Chung K Y, Taylor J S, Shum D K, et al. Axon routing at the optic chiasm after enzymatic removal of chondroitin sulfate in mouse embryos. Development, 2000, 127: 2673–2683, 10821765, 1:CAS:528:DC%2BD3cXkslOrsrs%3D

    CAS  PubMed  Google Scholar 

  13. Chung K Y, Leung K M, Lin L, et al. Heparan sulfate proteoglycan expression in the optic chiasm of mouse embryos. J Comp Neurol, 2001, 436: 236–247, 10.1002/cne.1245, 11438927, 1:STN:280:DC%2BD3MzosVOhtw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  14. Lin L, Taylor J S, Chan S O. Changes in expression of fibroblast growth factor receptors during development of the mouse retinofugal pathway. J Comp Neurol, 2002, 451: 22–32, 10.1002/cne.10337, 12209838, 1:CAS:528:DC%2BD38XmsFaqsr4%3D

    Article  CAS  PubMed  Google Scholar 

  15. Lin L, Chan S O. Perturbation of CD44 function affects chiasmatic routing of retinal axons in brain slice preparations of the mouse retinofugal pathway. Eur J Neurosci, 2003, 17: 2299–2312, 10.1046/j.1460-9568.2003.02686.x, 12814363

    Article  PubMed  Google Scholar 

  16. Chung K Y, Leung K M, Lin C C, et al. Regionally specific expression of L1 and sialylated NCAM in the retinofugal pathway of mouse embryos. J Comp Neurol, 2004, 471: 482–498, 10.1002/cne.20047, 15022265, 1:CAS:528:DC%2BD2cXjslSlsrc%3D

    Article  CAS  PubMed  Google Scholar 

  17. Leung K M, Margolis R U, Chan S O. Expression of phosphacan and neurocan during early development of mouse retinofugal pathway. Brain Res Dev Brain Res, 2004, 152: 1–10, 10.1016/j.devbrainres.2004.05.010, 15283989, 1:CAS:528:DC%2BD2cXmt1WksLg%3D

    Article  CAS  PubMed  Google Scholar 

  18. Cheung A W, Lam J S, Chan S O. Selective inhibition of ventral temporal but not dorsal nasal neurites from mouse retinal explants during contact with chondroitin sulphate. Cell Tissue Res, 2005, 321: 9–19, 10.1007/s00441-005-1104-x, 15902501, 1:CAS:528:DC%2BD2MXlvVyntrg%3D

    Article  CAS  PubMed  Google Scholar 

  19. Lin L, Cheung A W, Chan S O. Chiasmatic neurons in the ventral diencephalon of mouse embryos—changes in arrangement and heterogeneity in surface antigen expression. Brain Res Dev Brain Res, 2005, 158: 1–12, 10.1016/j.devbrainres.2005.05.001, 15951026, 1:CAS:528:DC%2BD2MXns1WisLY%3D

    Article  CAS  PubMed  Google Scholar 

  20. Chan C K, Wang J, Lin L, et al. Enzymatic removal of hyaluronan affects routing of axons in the mouse optic chiasm. Neuroreport, 2007, 18: 1533–1538, 10.1097/WNR.0b013e3282efa065, 17885596, 1:CAS:528:DC%2BD2sXhtVKhsrnN

    Article  CAS  PubMed  Google Scholar 

  21. Lin L, Wang J, Chan C K, et al. Effects of exogenous hyaluronan on midline crossing and axon divergence in the optic chiasm of mouse embryos. Eur J Neurosci, 2007, 26: 1–11, 10.1111/j.1460-9568.2007.05642.x, 17581255

    Article  PubMed  Google Scholar 

  22. Lin L, Wang J, Chan C K, et al. Localization of hyaluronan in the optic pathway of mouse embryos. Neuroreport, 2007, 18: 355–358, 10.1097/WNR.0b013e32802b70e2, 17435602

    Article  PubMed  Google Scholar 

  23. Lam J S, Wang L, Lin L, et al. Role of protein kinase C in selective inhibition of mouse retinal neurites during contacts with chondroitin sulfates. Neurosci Lett, 2008, 434: 150–154, 10.1016/j.neulet.2008.01.064, 18313852, 1:CAS:528:DC%2BD1cXjtlyhurk%3D

    Article  CAS  PubMed  Google Scholar 

  24. Gooi H C, Feizi T, Kapadia A, et al. Stage-specific embryonic antigen involves alpha 1 goes to 3 fucosylated type 2 blood group chains. Nature, 1981, 292: 156–158, 10.1038/292156a0, 6165896, 1:CAS:528:DyaL3MXmtFylurw%3D

    Article  CAS  PubMed  Google Scholar 

  25. Grumet M, Flaccus A, Margolis R U. Functional characterization of chondroitin sulfate proteoglycans of brain: Interactions with neurons and neural cell adhesion molecules. J Cell Biol, 1993, 120: 815–824, 10.1083/jcb.120.3.815, 8425902, 1:CAS:528:DyaK3sXnsl2ltw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  26. Friedlander D R, Milev P, Karthikeyan L, et al. The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J Cell Biol, 1994, 125: 669–680, 10.1083/jcb.125.3.669, 7513709, 1:CAS:528:DyaK2cXis1Krsbc%3D

    Article  CAS  PubMed  Google Scholar 

  27. Reese B E, Johnson P T, Hocking D R, et al. Chronotopic fiber reordering and the distribution of cell adhesion and extracellular matrix molecules in the optic pathway of fetal ferrets. J Comp Neurol, 1997, 380: 355–372, 10.1002/(SICI)1096-9861(19970414)380:3<355::AID-CNE5>3.0.CO;2-1, 9087518, 1:CAS:528:DyaK2sXislams70%3D

    Article  CAS  PubMed  Google Scholar 

  28. Sretavan D W, Pure E, Siegel M W, et al. Disruption of retinal axon ingrowth by ablation of embryonic mouse optic chiasm neurons. Science, 1995, 269: 98–101, 10.1126/science.7541558, 7541558, 1:CAS:528:DyaK2MXmsl2ju7c%3D

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Chan C K, Taylor J S, et al. Localization of Nogo and its receptor in the optic pathway of mouse embryos. J Neurosci Res, 2008, 86: 1721–1733, 10.1002/jnr.21626, 18214994, 1:CAS:528:DC%2BD1cXnt1ektbY%3D

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Chan C K, Taylor J S, et al. The growth-inhibitory protein Nogo is involved in midline routing of axons in the mouse optic chiasm. J Neurosci Res, 2008, 86: 2581–2590, 10.1002/jnr.21717, 18478548, 1:CAS:528:DC%2BD1cXhtFansbbL

    Article  CAS  PubMed  Google Scholar 

  31. Charron F, Stein E, Jeong J, et al. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell, 2003, 113: 11–23, 10.1016/S0092-8674(03)00199-5, 12679031, 1:CAS:528:DC%2BD3sXjtVWqsLw%3D

    Article  CAS  PubMed  Google Scholar 

  32. Hao Y L, Hong L P, Chan S O, et al. Changes of Smoothened expression during retinofugal pathway development in mouse embryos. Nan Fang Yi Ke Da Xue Xue Bao (in Chinese), 2007, 27: 293–295, 1:CAS:528:DC%2BD2sXkvVOmsLk%3D

    CAS  Google Scholar 

  33. Hao Y L, Chan S O, Dong W R. Changes of retinofugal pathway development in mouse embryos after Sonic hedgehog antibody perturbation. Nan Fang Yi Ke Da Xue Xue Bao, 2006, 26: 1679–1684, 17259096, 1:CAS:528:DC%2BD2sXhtVGnsrg%3D

    CAS  PubMed  Google Scholar 

  34. Hao Y L, Wang J, Chan C K. Disruption of sonic hedgehog signaling affects axon routing in the mouse optic chiasm. neuroembryol aging, 2006–2007, 4: 76084, 10.1159/000103583, 1:CAS:528:DC%2BD2sXntVSlt7Y%3D

    Article  Google Scholar 

  35. Deng J B, Yu D M, Wu P, et al. The tracing study of developing entorhino-hippocampal pathway. Int J Dev Neurosci, 2007, 25: 251–258, 10.1016/j.ijdevneu.2007.03.002, 17493779

    Article  PubMed  Google Scholar 

  36. Forster E, Zhao S, Frotscher M. Laminating the hippocampus. Nat Rev Neurosci, 2006, 7: 259–267, 10.1038/nrn1882, 16543914, 1:CAS:528:DC%2BD28Xis1Gksro%3D

    Article  PubMed  Google Scholar 

  37. Wu P, Li M S, Yu D M, et al. Reelin, a guidance signal for the regeneration of the entorhino-hippocampal path. Brain Res, 2008, 1208: 1–7, 10.1016/j.brainres.2008.02.092, 18395191, 1:CAS:528:DC%2BD1cXlsFOjsbk%3D

    Article  CAS  PubMed  Google Scholar 

  38. Wang C L, Zhang L, Zhou Y, et al. Activity-dependent development of callosal projections in the somatosensory cortex. J Neurosci, 2007, 27: 11334–11342, 10.1523/JNEUROSCI.3380-07.2007, 17942728, 1:CAS:528:DC%2BD2sXht1ekurrI

    Article  CAS  PubMed  Google Scholar 

  39. Lohof A M, Quillan M, Dan Y. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J Neurosci, 1992, 12: 1253–1261, 1372932, 1:CAS:528:DyaK38Xkt1ekt7o%3D

    CAS  PubMed  Google Scholar 

  40. Xiang Y, Li Y, Zhang Z, et al. Nerve growth cone guidance mediated by G protein-coupled receptors. Nat Neurosci, 2002, 5: 843–848, 10.1038/nn899, 12161754, 1:CAS:528:DC%2BD38Xms1Wqt74%3D

    Article  CAS  PubMed  Google Scholar 

  41. Yuan X B, Jin M, Xu X, et al. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat Cell Biol, 2003, 5: 38–45, 10.1038/ncb895, 12510192, 1:CAS:528:DC%2BD3sXivFCg

    Article  CAS  PubMed  Google Scholar 

  42. Shi L, Fu W Y, Hung K W, et al. Alpha2-chimaerin interacts with EphA4 and regulates EphA4-dependent growth cone collapse. Proc Natl Acad Sci USA, 2007, 104: 16347–16352, 10.1073/pnas.0706626104, 17911252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin M, Guan C B, Jiang Y A, et al. Ca2+-dependent regulation of rho GTPases triggers turning of nerve growth cones. J Neurosci, 2005, 25: 2338–2347, 10.1523/JNEUROSCI.4889-04.2005, 15745960, 1:CAS:528:DC%2BD2MXisVOmtL8%3D

    Article  CAS  PubMed  Google Scholar 

  44. Xu X, Fu A K, Ip F C, et al. Agrin regulates growth cone turning of Xenopus spinal motoneurons. Development, 2005, 132: 4309–4316, 10.1242/dev.02016, 16141222, 1:CAS:528:DC%2BD2MXht1SltrnF

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Jia Y C, Cui K, et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature, 2005, 434: 894–898, 10.1038/nature03477, 15758952, 1:CAS:528:DC%2BD2MXjtFOms7s%3D

    Article  CAS  PubMed  Google Scholar 

  46. Koch M, Murrell J R, Hunter D D, et al. A novel member of the netrin family, beta-netrin, shares homology with the beta chain of laminin: identification, expression, and functional characterization. J Cell Biol, 2000, 151: 221–234, 10.1083/jcb.151.2.221, 11038171, 1:CAS:528:DC%2BD3cXnsVaqs7g%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qin S, Yu L, Gao Y, et al. Characterization of the receptors for axon guidance factor netrin-4 and identification of the binding domains. Mol Cell Neurosci, 2007, 34: 243–250, 10.1016/j.mcn.2006.11.002, 17174565, 1:CAS:528:DC%2BD2sXhtVCrsrY%3D

    Article  CAS  PubMed  Google Scholar 

  48. Hu C, Liu J, Zhang Y, et al. A useful transgenic mouse line for studying the development of spinal nociceptive circuits. Neurosci Lett 2009, 450:211–216., 10.1016/j.neulet.2008.11.054, 19063941, 1:CAS:528:DC%2BD1MXntl2itw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  49. Feng N, Ning GM, Zheng XX: A framework for simulating axon guidance. Neurocomputing, 2005, 68: 70–84, 10.1016/j.neucom.2005.01.007

    Article  Google Scholar 

  50. Lindenmayer A. Developmental algorithms for multicellular organisms: a survey of L-systems. J Theor Biol, 1975, 54: 3–22, 10.1016/S0022-5193(75)80051-8, 1202291, 1:STN:280:DyaE28%2Fntlymuw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  51. Prusinkiewicz P. Modeling plant growth and development. Curr Opin Plant Biol, 2004, 7: 79–83, 10.1016/j.pbi.2003.11.007, 14732445, 1:CAS:528:DC%2BD2cXltFWquw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  52. Ascoli G A, Krichmar J L, Nasuto S J, et al. Generation, description and storage of dendritic morphology data. Philos Trans R Soc Lond B Biol Sci, 2001, 356: 1131–1145, 10.1098/rstb.2001.0905, 11545695, 1:STN:280:DC%2BD3MvpvVChsw%3D%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hamilton P. A language to describe the growth of neurites. Biol Cybern, 1993, 68: 559–565, 10.1007/BF00200816, 8324064, 1:STN:280:DyaK3szht12ktw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  54. Lai K O, Ip F C, Ip N Y. Identification and characterization of splice variants of ephrin-A3 and ephrin-A5. FEBS Lett, 1999, 458: 265–269, 10.1016/S0014-5793(99)01159-X, 10481078, 1:CAS:528:DyaK1MXlvVCgtb0%3D

    Article  CAS  PubMed  Google Scholar 

  55. Qu X, Wei H, Zhai Y, et al. Identification, characterization, and functional study of the two novel human members of the semaphorin gene family. J Biol Chem, 2002, 277: 35574–35585, 10.1074/jbc.M206451200, 12110693, 1:CAS:528:DC%2BD38Xnt1Wls7k%3D

    Article  CAS  PubMed  Google Scholar 

  56. Chen L, Yao J H, Zhang S H, et al. Slit-like 2, a novel zebrafish slit homologue that might involve in zebrafish central neural and vascular morphogenesis. Biochem Biophys Res Commun, 2005, 336: 364–371, 10.1016/j.bbrc.2005.08.071, 16125671, 1:CAS:528:DC%2BD2MXpvFehtL4%3D

    Article  CAS  PubMed  Google Scholar 

  57. Li X, Chen Y, Liu Y, et al. Structural basis of Robo proline-rich motif recognition by the srGAP1 Src homology 3 domain in the Slit-Robo signaling pathway. J Biol Chem, 2006, 281: 28430–28437, 10.1074/jbc.M604135200, 16857672, 1:CAS:528:DC%2BD28XpsFOqtr8%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ding S, Luo J H, Yuan X B. Semaphorin-3F attracts the growth cone of cerebellar granule cells through cGMP signaling pathway. Biochem Biophys Res Commun, 2007, 356: 857–863, 10.1016/j.bbrc.2007.03.073, 17395160, 1:CAS:528:DC%2BD2sXjvFOmtr4%3D

    Article  CAS  PubMed  Google Scholar 

  59. Rakic P. Neuronal migration and contact guidance in the primate telencephalon. Postgrad Med J, 1978, 54: 25–40, 364453

    PubMed  Google Scholar 

  60. Marin O, Rubenstein J L. Cell migration in the forebrain. Annu Rev Neurosci, 2003, 26: 441–483, 10.1146/annurev.neuro.26.041002.131058, 12626695, 1:CAS:528:DC%2BD3sXntFSisLc%3D

    Article  CAS  PubMed  Google Scholar 

  61. Zheng W, Yuan X. Guidance of cortical radial migration by gradient of diffusible factors. Cell Adh Migr, 2008, 2: 48–50, 19262126

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen G, Sima J, Jin M, et al. Semaphorin-3A guides radial migration of cortical neurons during development. Nat Neurosci, 2008, 11: 36–44, 10.1038/nn2018, 18059265, 1:CAS:528:DC%2BD1cXhtFCltA%3D%3D

    Article  PubMed  Google Scholar 

  63. Zhao C T, Li K, Li J T, et al. PKCdelta regulates cortical radial migration by stabilizing the Cdk5 activator p35. Proc Natl Acad Sci USA, 2009, 106: 21353–21358, 10.1073/pnas.0812872106, 19965374, 1:CAS:528:DC%2BD1MXhsVKmsLbN

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Starr D A, Han M. Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science, 2002, 298: 406–409, 10.1126/science.1075119, 12169658, 1:CAS:528:DC%2BD38Xns12htLk%3D

    Article  CAS  PubMed  Google Scholar 

  65. Buchman J J, Tsai L H. Putting a notch in our understanding of nuclear migration. Cell, 2008, 134: 912–914, 10.1016/j.cell.2008.09.007, 18805082, 1:CAS:528:DC%2BD1cXht1Sns73N

    Article  CAS  PubMed  Google Scholar 

  66. Kracklauer M P, Banks S M, Xie X, et al. Drosophila klaroid encodes a SUN domain protein required for Klarsicht localization to the nuclear envelope and nuclear migration in the eye. Fly (Austin), 2007, 1: 75–85

    Article  Google Scholar 

  67. Zhang X, Lei K, Yuan X, et al. SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron, 2009, 64: 173–187, 10.1016/j.neuron.2009.08.018, 19874786, 1:CAS:528:DC%2BD1MXhsFKltLnI

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Buonanno A, Fischbach G D. Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol, 2001, 11: 287–296, 10.1016/S0959-4388(00)00210-5, 11399426, 1:CAS:528:DC%2BD3MXks1Oktb8%3D

    Article  CAS  PubMed  Google Scholar 

  69. Mei L, Xiong W C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci, 2008, 9: 437–452, 10.1038/nrn2392, 18478032, 1:CAS:528:DC%2BD1cXmtVahur0%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yau H J, Wang H F, Lai C, et al. Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus: preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cereb Cortex, 2003, 13: 252–264, 10.1093/cercor/13.3.252, 12571115

    Article  PubMed  Google Scholar 

  71. Anton E S, Ghashghaei H T, Weber J L, et al. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat Neurosci, 2004, 7: 1319–1328, 10.1038/nn1345, 15543145, 1:CAS:528:DC%2BD2cXhtVCjsLzJ

    Article  CAS  PubMed  Google Scholar 

  72. Flames N, Long J E, Garratt A N, et al. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron, 2004, 44: 251–261, 10.1016/j.neuron.2004.09.028, 15473965, 1:CAS:528:DC%2BD2cXpslOgsb4%3D

    Article  CAS  PubMed  Google Scholar 

  73. Shi M, Guo C, Dai J X, et al. DCC is required for the tangential migration of noradrenergic neurons in locus coeruleus of mouse brain. Mol Cell Neurosci, 2008, 39: 529–538, 10.1016/j.mcn.2008.07.023, 18771734, 1:CAS:528:DC%2BD1cXhsVWrs7%2FM

    Article  CAS  PubMed  Google Scholar 

  74. Fu M, Lui V C, Sham M H, et al. Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut. J Cell Biol, 2004, 166: 673–684, 10.1083/jcb.200401077, 15337776, 1:CAS:528:DC%2BD2cXnsVeisb8%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li Y L, Wu G Z, Dawe G S, et al. Cell surface sialylation and fucosylation are regulated by L1 via phospholipase Cgamma and cooperate to modulate neurite outgrowth, cell survival and migration. PLoS One, 2008, 3: e3841, 10.1371/journal.pone.0003841, 19048108, 1:CAS:528:DC%2BD1cXhsVOktbfJ

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoBing Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, X. Axon guidance and neuronal migration research in China. Sci. China Life Sci. 53, 304–314 (2010). https://doi.org/10.1007/s11427-010-0068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0068-6

Keywords

Navigation