Skip to main content
Log in

Pain research in China

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

In addition to investigating the anatomy, neurochemistry and neurophysiology of pain pathways, Chinese researchers have extended their work into the molecular and cellular mechanisms of sensory afferent transmission at the spinal cord level as well as cognitive processing in the brain. The mechanism underlying acupuncture analgesia remains a subject of special interest for Chinese pain researchers, with the aim of combining clinical practice with the understanding of pain transmission and analgesic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woolf C J, Ma Q. Nociceptors—noxious stimulus detectors. Neuron, 2007. 55: 353–364, 10.1016/j.neuron.2007.07.016, 17678850, 1:CAS:528:DC%2BD2sXpsVGltrw%3D

    Article  CAS  PubMed  Google Scholar 

  2. Maxwell D J, Rethelyi M. Ultrastructure and synaptic connections of cutaneius afferent fibres in the spinal cord. TINS, 1987, 10: 117–123

    Google Scholar 

  3. Besse D, Lombard M C, Perrot S, et al. Regulation of opioid binding sites in the superficial dorsal horn of the rat spinal cord following loose ligation of the sciatic nerve: Comparison with sciatic nerve section and lumbar dorsal rhizotomy. Neuroscience, 1992, 50: 921–933, 10.1016/0306-4522(92)90215-N, 1333063, 1:CAS:528:DyaK38Xmt1KlsLg%3D

    Article  CAS  PubMed  Google Scholar 

  4. Mennicken F, Zhang J, Hoffert C, et al. Phylogenetic changes in the expression of delta opioid receptors in spinal cord and dorsal root ganglia. J Comp Neurol, 2003, 465: 349–360, 10.1002/cne.10839, 12966560, 1:CAS:528:DC%2BD3sXot1Whs7k%3D

    Article  CAS  PubMed  Google Scholar 

  5. Bao L, Jin S, Zhang C, et al. Activation of delta opioid receptors induces receptor insertion and neuropeptide secretion. Neuron, 2003, 3: 121–133, 10.1016/S0896-6273(02)01103-0

    Article  Google Scholar 

  6. Guan J, Xu Z, Gao H, et al. Interaction with vesicle luminal protachykinin regulates surface expression of δ-opioid receptors and opioid analgesia. Cell, 2005. 122: 619–631, 10.1016/j.cell.2005.06.010, 16122428, 1:CAS:528:DC%2BD2MXpvVKntbk%3D

    Article  CAS  PubMed  Google Scholar 

  7. Wang H B, Guan J S, Bao L, et al. Distinct subcellular distribution of δ-opioid receptor fused with various tags in PC12 cells. Neurochem Res, 2008, 33: 2028–2034, 10.1007/s11064-008-9678-9, 18365312, 1:CAS:528:DC%2BD1cXhtFOjsbnE

    Article  CAS  PubMed  Google Scholar 

  8. Ma G Q, Wang B, Wang H B, et al, Short elements with charged amino acids form clusters to sort protachykinin into large dense-core vesicles. Traffic, 2008, 9: 2165–2179, 10.1111/j.1600-0854.2008.00836.x, 18939957, 1:CAS:528:DC%2BD1cXhsFSnsLfJ

    Article  CAS  PubMed  Google Scholar 

  9. Gomes I, Gupta A, Filipovska J, et al. A role for heterodimerization of μ and δ opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA, 2004, 101: 5135–5139, 10.1073/pnas.0307601101, 15044695, 1:CAS:528:DC%2BD2cXjsFCitrw%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schiller P W, Weltrowska G, Berezowska I, et al. The TIPP opioid peptide family: development of δ antagonists, δ agonists, and mixed μ agonist/δ antagonists. Biopolymers, 1999, 51: 411–425, 10.1002/(SICI)1097-0282(1999)51:6<411::AID-BIP4>3.0.CO;2-Z, 10797230, 1:CAS:528:DC%2BD3cXjtFSqtr8%3D

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Y, King M A, Schuller A G, et al. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in δ opioid receptor knockout mice. Neuron, 1999, 24: 243–252, 10.1016/S0896-6273(00)80836-3, 10677041, 1:CAS:528:DyaK1MXmsVOrs7g%3D

    Article  CAS  PubMed  Google Scholar 

  12. Nitsche J F, Schuller A G, King M A, et al. Genetic dissociation of opiate tolerance and physical dependence in δ-opioid receptor-1 and preproenkephalin knock-out mice. J Neurosci, 2002, 22: 10906–10913, 12486185, 1:CAS:528:DC%2BD38XpslCqtL0%3D

    CAS  PubMed  Google Scholar 

  13. Xie W Y, He Y, Yang Y R, et al. Disruption of Cdk5-associated phosphorylation of residue threonine-161 of the δ-opioid receptor: impaired receptor function and attenuated morphine antinociceptive tolerance. J Neurosci, 2009, 29: 3551–3564, 10.1523/JNEUROSCI.0415-09.2009, 19295160, 1:CAS:528:DC%2BD1MXjs1Wmu74%3D

    Article  CAS  PubMed  Google Scholar 

  14. Scherrer G, Imamachi N, Cao Y Q, et al. Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell, 2009, 137: 1148–1159, 10.1016/j.cell.2009.04.019, 19524516, 1:CAS:528:DC%2BD1MXps1eiu7k%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Z N, Li Q, Liu C, et al. The voltage-gated Na+ channel Nav1.8 contains an ER-retention/retrieval signal antagonized by the beta3 subunit. J Cell Sci, 2008, 121: 3243–3252, 10.1242/jcs.026856, 18782866, 1:CAS:528:DC%2BD1cXhtlGltrnJ

    Article  CAS  PubMed  Google Scholar 

  16. Zhou Y, Li G D, Zhao Z Q. State-dependent phosphorylation of epsilon-isozyme of protein kinase C in adult rat dorsal root ganglia after inflammation and nerve injury. J Neurochem, 2003, 85: 571–580, 12694383, 1:CAS:528:DC%2BD3sXnslyrs7Y%3D, 10.1046/j.1471-4159.2003.01675.x

    Article  CAS  PubMed  Google Scholar 

  17. Luo H, Cheng J, Han J S, et al. Change of vanilloid receptor 1 expression in dorsal root ganglion and spinal dorsal horn during inflammatory nociception induced by complete Freund’s adjuvant in rats. Neuroreport, 2004, 15: 655–658, 10.1097/00001756-200403220-00016, 15094470, 1:CAS:528:DC%2BD2cXjsFSkt70%3D

    Article  CAS  PubMed  Google Scholar 

  18. Xu G Y, Huang L Y, Zhao Z Q. Activation of silent mechanoreceptive cat C and Aδ sensory neurons and their substance P expression following peripheral inflammation. J Physiol, 2000, 528Pt 2: 339–348, 10.1111/j.1469-7793.2000.00339.x, 11034623, 1:CAS:528:DC%2BD3cXnvVShtrY%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu G Y, Zhao Z Q. Change in excitability and phenotype of substance P and its receptor in cat Aβ sensory neurons following peripheral inflammation. Brain Res, 2001, 923: 112–119, 10.1016/S0006-8993(01)03203-6, 11743978, 1:CAS:528:DC%2BD3MXovF2jsLk%3D

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Zhang Y H, Zhao Z Q. Novel purinergic sensitivity develops in injured sensory axons following sciatic nerve transection in rat. Brain Res, 2001, 911: 168–172, 10.1016/S0006-8993(01)02651-8, 11511386, 1:CAS:528:DC%2BD3MXlvFWltLg%3D

    Article  CAS  PubMed  Google Scholar 

  21. Zhang H, Cang C L, Kawasaki Y, et al. Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKCɛ: a novel pathway for heat hyperalgesia. J Neurosci, 2007, 27: 12067–12077, 10.1523/JNEUROSCI.0496-07.2007, 17978048, 1:CAS:528:DC%2BD2sXhtlSktrvK

    Article  CAS  PubMed  Google Scholar 

  22. Song P, Zhao Z. Interleukin 2-induced antinociception partially coupled with mu receptor. Cytokine, 2000, 12: 1240–1242, 10.1006/cyto.2000.0695, 10930304, 1:CAS:528:DC%2BD3cXltlOqsbo%3D

    Article  CAS  PubMed  Google Scholar 

  23. Hu J Y, Zhao Z Q. Differential contributions of NMDA and non-NMDA receptors to spinal Fos expression evoked by superficial tissue and muscle inflammation in the rat. Neuroscience, 2001, 106: 823–831, 10.1016/S0306-4522(01)00299-8, 11682167, 1:CAS:528:DC%2BD3MXnslWnt7c%3D

    Article  CAS  PubMed  Google Scholar 

  24. Song P, Hu J Y, Zhao Z Q. Spinal somatostatin SSTR2A receptors are preferentially up-regulated and involved in thermonociception but not mechanonociception. Exp Neurol, 2002, 178: 280–287, 10.1006/exnr.2002.8025, 12504886, 1:CAS:528:DC%2BD38Xps12kurs%3D

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Yang Z, Gao X, et al. The role of 5-hydroxytryptamine1A and 5-hydroxytryptamine1B receptors in modulating spinal nociceptive transmission in normal and carrageenan-injected rats. Pain, 2001, 92: 201–211, 10.1016/S0304-3959(01)00259-7, 11323141, 1:CAS:528:DC%2BD3MXivFehurs%3D

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y Q, Gao X, Ji G C, et al. Expression of 5-HT2A receptor mRNA in rat spinal dorsal horn and some nuclei of brainstem after peripheral inflammation. Brain Res, 2001, 900: 146–151, 10.1016/S0006-8993(01)02283-1, 11325358, 1:CAS:528:DC%2BD3MXivFeitbg%3D

    Article  CAS  PubMed  Google Scholar 

  27. Xie H, Dong Z Q, Ma F, et al. Involvement of serotonin 2A receptors in the analgesic effect of tramadol in mono-arthritic rats. Brain Res, 2008, 1210: 76–83, 10.1016/j.brainres.2008.02.049, 18417104, 1:CAS:528:DC%2BD1cXlslWls7k%3D

    Article  CAS  PubMed  Google Scholar 

  28. Gong Q J, Li Y Y, Xin W J, et al. ATP induces long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn: The roles of P2X4 receptors and p38 MAPK in microglia. Glia, 2009, 57: 583–591, 10.1002/glia.20786, 18837052

    Article  PubMed  Google Scholar 

  29. Wu L J, Duan B, Mei Y D, et al. Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem, 2004, 279: 43716–43724, 10.1074/jbc.M403557200, 15302881, 1:CAS:528:DC%2BD2cXot1ygsro%3D

    Article  CAS  PubMed  Google Scholar 

  30. Duan B, Wu L J, Yu Y Q, et al. Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci, 2007, 27: 11139–11348, 10.1523/JNEUROSCI.3364-07.2007, 17928456, 1:CAS:528:DC%2BD2sXht1WnsbzI

    Article  CAS  PubMed  Google Scholar 

  31. Zhang W, Liu L Y, Xu T L. Reduced potassium-chloride co-transporter expression in spinal cord dorsal horn neurons contributes to inflammatory pain hypersensitivity in rats. Neuroscience, 2008, 152: 502–510, 18262726, 1:CAS:528:DC%2BD1cXjs1KqurY%3D

    Article  CAS  PubMed  Google Scholar 

  32. Yang Y R, He Y, Zhang Y, et al. Activation of cyclin-dependent kinase 5 (Cdk5) in primary sensory and dorsal horn neurons by peripheral inflammation contributes to heat hyperalgesia. Pain, 2007, 127: 109–120, 10.1016/j.pain.2006.08.008, 16996690, 1:CAS:528:DC%2BD2sXht1ersg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  33. He Y, Li H L, Xie W Y, et al. The presence of active Cdk5 associated with p35 in astrocytes and its important role in process elongation of scratched astrocyte. Glia, 2007, 55: 573–583, 10.1002/glia.20485, 17295212

    Article  PubMed  Google Scholar 

  34. Liu T, Pang X Y, Jiang F, et al. Anti-nociceptive effects induced by intrathecal injection of BmK AS, a polypeptide from the venom of Chinese-scorpion Buthus martensi Karsch, in rat formalin test. J Ethnopharmacol, 2008, 117: 332–338, 10.1016/j.jep.2008.02.003, 18343613, 1:CAS:528:DC%2BD1cXkvFGksL4%3D

    Article  CAS  PubMed  Google Scholar 

  35. Chen J, Chen H S. Pivotal role of capsaicin-sensitive primary afferents in development of both heat and mechanical hyperalgesia induced by intraplantar bee venom injection. Pain, 2001, 9: 367–376, 10.1016/S0304-3959(00)00458-9

    Article  Google Scholar 

  36. Chen Y N, Li K C, Li Z, et al. Effects of bee venom peptidergic components on rat pain-related behaviors and inflammation. Neuroscience, 2006, 138: 631–640, 10.1016/j.neuroscience.2005.11.022, 16446039, 1:CAS:528:DC%2BD28XhvVWrsbY%3D

    Article  CAS  PubMed  Google Scholar 

  37. Li K C, Chen J. Altered pain-related behaviors and spinal neuronal responses produced by s.c. injection of melittin in rats. Neuroscience, 2004, 126: 753–762, 10.1016/j.neuroscience.2004.03.050, 15183523, 1:CAS:528:DC%2BD2cXks12qt7o%3D

    Article  CAS  PubMed  Google Scholar 

  38. Chen J. Spinal processing of bee venom-induced pain and hyperalgesia. Sheng Li Xue Bao, 2008, 60: 645–652, 18958373, 1:CAS:528:DC%2BD1MXhtVagtbfM

    CAS  PubMed  Google Scholar 

  39. Hu S J, Xing J L. An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat. Pain, 1998, 77: 15–23, 10.1016/S0304-3959(98)00067-0, 9755014, 1:STN:280:DyaK1cvis1Sjuw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  40. Song X J, Hu S J, Greenquist K W, et al. Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia. J Neurophysiol, 1999, 82: 3347–3358, 10601466, 1:STN:280:DC%2BD3c%2FntVSgtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  41. Bao L, Wang H F, Cai H J, et al. Peripheral axotomy induces only very limited sprouting of coarse myelinated afferents into inner lamina II of rat spinal cord. Eur J Neurosci, 2002, 16: 175–185, 10.1046/j.1460-9568.2002.02080.x, 12169100

    Article  PubMed  Google Scholar 

  42. Hökfelt T, Zhang X, Xu X, et al. Central consequences of peripheral nerve damage. In Wall and Melzack’s Textbook of Pain. McMahon S B and Koltzenburg M Eds. New York: Elsevier, 2005. 947–960

    Google Scholar 

  43. Xiao H S, Huang Q H, Zhang F X, et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci USA, 2002, 99: 8360–8365, 10.1073/pnas.122231899, 12060780, 1:CAS:528:DC%2BD38XkvVGgu7Y%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang L, Zhang F X, Huang F, et al. Peripheral nerve injury induces trans-synaptic modification of channels, receptors and signal pathways in rat dorsal spinal cord. Eur J Neurosci, 2004, 19: 871–883, 10.1111/j.0953-816X.2004.03121.x, 15009134

    Article  PubMed  Google Scholar 

  45. Zhang X, Xiao H S. Gene array analysis to determine the components of neuropathic pain signaling. Curr Opin Mol Ther, 2005, 7: 532–537, 16370375, 1:CAS:528:DC%2BD28XislyksA%3D%3D

    CAS  PubMed  Google Scholar 

  46. Tu H, Deng L, Sun Q, et al. Hyperpolarization-activated, cyclic nucleotidegated cation channels: roles in the differential electrophysiological properties of rat primary afferent neurons. J Neurosci Res, 2004, 76: 713–722, 10.1002/jnr.20109, 15139030, 1:CAS:528:DC%2BD2cXks12ltLk%3D

    Article  CAS  PubMed  Google Scholar 

  47. Sun Q, Tu H, Xing G G, et al. Ectopic discharges from injured nerve fibers are highly correlated with tactile allodynia only in early, but not late, stage in rats with spinal nerve ligation. Exp Neurol, 2005. 191: 128–136, 10.1016/j.expneurol.2004.09.008, 15589519

    Article  PubMed  Google Scholar 

  48. Sun Q, Xing G G, Tu H Y, et al. Inhibition of hyperpolarization-activated current by ZD7288 suppresses ectopic discharges of injured dorsal root ganglion neurons in a rat model of neuropathic pain. Brain Res, 2005. 1032: 63–69, 10.1016/j.brainres.2004.10.033, 15680942, 1:CAS:528:DC%2BD2MXosVKjsQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  49. Qu X X, Cai J, Li M J, et al. Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Exp Neurol, 2009, 215: 298–307, 10.1016/j.expneurol.2008.10.018, 19046970, 1:CAS:528:DC%2BD1MXmvVemsA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  50. Song X J, Zheng J H, Cao J L, et al. EphrinB-EphB receptor signaling contributes to neuropathic pain by regulating neural excitability and spinal synaptic plasticity in rats. Pain, 2008, 139: 168–180, 10.1016/j.pain.2008.03.019, 18448254, 1:CAS:528:DC%2BD1cXhtFCgur3P

    Article  CAS  PubMed  Google Scholar 

  51. Cao J L, Ruan J P, Ling D Y, et al. Activation of peripheral ephrinBs/EphBs signaling induces hyperalgesia through a MAPKs-mediated mechanism in mice. Pain, 2008, 139: 617–631, 10.1016/j.pain.2008.06.023, 18706764, 1:CAS:528:DC%2BD1cXht1eitr%2FF

    Article  CAS  PubMed  Google Scholar 

  52. Song X J, Cao J L, Li H C, et al. Upregulation and redistribution of ephrinB and EphB receptor in dorsal root ganglion and spinal dorsal horn neurons after peripheral nerve injury and dorsal rhizotomy. Eur J Pain, 2008, 12: 1031–1039, 10.1016/j.ejpain.2008.01.011, 18321739, 1:CAS:528:DC%2BD1cXhtV2jtLbJ

    Article  CAS  PubMed  Google Scholar 

  53. Han Y, Song X S, Liu W T, et al. Targeted mutation of EphB1 receptor prevents development of neuropathic hyperalgesia and physical dependence on morphine in mice. Mol Pain, 2008, 4: 60, 10.1186/1744-8069-4-60, 19025592, 1:CAS:528:DC%2BD1cXhsFekt7jN

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dong Z Q, Ma F, Xie H, et al. Down-regulation of GFRalpha-1 expression by antisense oligodeoxynucleotide attenuates electroacupuncture analgesia on heat hyperalgesia in a rat model of neuropathic pain. Brain Res Bull, 2006, 69: 30–36, 10.1016/j.brainresbull.2005.08.027, 16464682, 1:CAS:528:DC%2BD28XhtlKmtbo%3D

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y Y, Wu S X, Zhou L, et al. Dose-related antiallodynic effects of cyclic AMP response element-binding protein-antisense oligonucleotide in the spared nerve injury model of neuropathic pain. Neuroscience, 2006, 139: 1083–1093, 10.1016/j.neuroscience.2006.01.011, 16515839, 1:CAS:528:DC%2BD28XktVygtr8%3D

    Article  CAS  PubMed  Google Scholar 

  56. Song P, Zhao Z Q. The involvement of glial cells in the development of morphine tolerance. Neurosci Res, 2001, 39: 281–286, 10.1016/S0168-0102(00)00226-1, 11248367, 1:CAS:528:DC%2BD3MXhvVans7s%3D

    Article  CAS  PubMed  Google Scholar 

  57. Wang Z Y, Zhang Y Q, Zhao Z Q. Inhibition of tetanically sciatic stimulation-induced LTP of spinal neurons and Fos expression by disrupting glutamate transporter GLT-1. Neuropharmacology, 2006, 51: 764–772, 10.1016/j.neuropharm.2006.05.024, 16815482, 1:CAS:528:DC%2BD28XovVSqt7c%3D

    Article  CAS  PubMed  Google Scholar 

  58. Sun S, Cao H, Han M, et al. New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis. Pain, 2007, 129: 64–75, 10.1016/j.pain.2006.09.035, 17123734, 1:CAS:528:DC%2BD2sXkt1ehtL4%3D

    Article  CAS  PubMed  Google Scholar 

  59. Gao Y J, Ren W H, Zhang Y Q, et al. Contributions of the anterior cingulate cortex and amygdala to pain- and fear-conditioned place avoidance in rats. Pain, 2004, 110: 343–353, 10.1016/j.pain.2004.04.030, 15275785

    Article  PubMed  Google Scholar 

  60. Lei L G, Zhang Y Q, Zhao Z Q. Pain-related aversion and Fos expression in the central nervous system in rats. Neuroreport, 2004, 15: 67–71, 10.1097/00001756-200401190-00014, 15106833

    Article  PubMed  Google Scholar 

  61. Cao H, Gao Y J, Ren W H, et al. Activation of extracellular signal-regulated kinase in the anterior cingulate cortex contributes to the induction and expression of affective pain. J Neurosci, 2009, 29: 3307–3321, 10.1523/JNEUROSCI.4300-08.2009, 19279268, 1:CAS:528:DC%2BD1MXjsVamtLg%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hsiang-Tung C. Neurophysiological basis of acupuncture analgesia. Sci Sin, 1978, 21: 829–846, 217085, 1:STN:280:DyaE1M7hsl2mtQ%3D%3D

    CAS  PubMed  Google Scholar 

  63. Huang C, Long H, Shi Y S, et al. Nocistatin potentiates electroacupuncture antinociceptive effects and reverses chronic tolerance to electroacupuncture in mice. Neurosci Lett, 2003, 350: 93–96, 10.1016/S0304-3940(03)00863-2, 12972161, 1:CAS:528:DC%2BD3sXntVeqtb0%3D

    Article  CAS  PubMed  Google Scholar 

  64. Huang C, Hu Z P, Jiang S Z, et al. CCKB receptor antagonist L365, 260 potentiates the efficacy to and reverses chronic tolerance to electroacupuncture-induced analgesia in mice. Brain Res Bull, 2007, 71: 447–451, 10.1016/j.brainresbull.2006.11.008, 17259012, 1:CAS:528:DC%2BD2sXpvVKntw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  65. Han J S. Acupuncture and endorphins. Neurosci Lett, 2004. 361: 258–261, 10.1016/j.neulet.2003.12.019, 15135942, 1:CAS:528:DC%2BD2cXjvVGktrg%3D

    Article  CAS  PubMed  Google Scholar 

  66. Han J S. Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci, 2003, 26: 17–22, 10.1016/S0166-2236(02)00006-1, 12495858, 1:CAS:528:DC%2BD38XpsFaqtbg%3D

    Article  CAS  PubMed  Google Scholar 

  67. Choi BT, Lee J H, Wan Y, et al. Involvement of ionotropic glutamate receptors in low frequency electroacupuncture analgesia in rats. Neurosci Lett, 2005, 377: 185–188, 10.1016/j.neulet.2004.11.095, 15755523, 1:CAS:528:DC%2BD2MXitF2gsrY%3D

    Article  CAS  PubMed  Google Scholar 

  68. Huang C, Long H, Shi Y S, et al. Ketamine enhances the efficacy to and delays the development of tolerance to electroacupuncture-induced antinociception in rats. Neurosci Lett, 2005, 375: 138–142, 10.1016/j.neulet.2004.10.086, 15670657, 1:CAS:528:DC%2BD2MXmvF2huw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  69. Xing G G, Liu F Y, Qu X X, et al. Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain. Exp Neurol, 2007, 208: 323–332, 17936754

    Article  PubMed  Google Scholar 

  70. Sun R Q, Wang H C, Wan Y, et al. Suppression of neuropathic pain by peripheral electrical stimulation in rats: μ-opioid receptor and NMDA receptor implicated. Exp Neurol, 2004. 187: 23–29, 10.1016/j.expneurol.2003.12.011, 15081584, 1:CAS:528:DC%2BD2cXjtVChtro%3D

    Article  CAS  PubMed  Google Scholar 

  71. Huang C, Li H T, Shi Y S, et al. Ketamine potentiates the effect of electroacupuncture on mechanical allodynia in a rat model of neuropathic pain. Neurosci Lett, 2004. 368: 327–331, 10.1016/j.neulet.2004.07.073, 15364421, 1:CAS:528:DC%2BD2cXnsFGmuro%3D

    Article  CAS  PubMed  Google Scholar 

  72. Huang C, Hu ZP, Long H, et al. Attenuation of mechanical but not thermal hyperalgesia by electroacupuncture with the involvement of opioids in rat model of chronic inflammatory pain. Brain Res Bull, 2004, 63: 99–103, 10.1016/j.brainresbull.2004.01.006, 15130698, 1:CAS:528:DC%2BD2cXjvVCis7k%3D

    Article  CAS  PubMed  Google Scholar 

  73. Liu H X, Tian J B, Luo F, et al. Repeated 100 Hz TENS for the treatment of chronic inflammatory hyperalgesia and suppression of spinal release of substance P in Monoarthritic Rats. Evid Based Complement Alternat Med, 2007, 4: 65–75, 10.1093/ecam/nel056, 17342243, 1:CAS:528:DC%2BD2sXkvVWqs78%3D

    Article  CAS  PubMed  Google Scholar 

  74. Ma F, Xie H, Dong Z Q, et al. Effect of intrathecal nocistatin on nociceptin/orphanin FQ analgesia in chronic constriction injury rat. Brain Res, 2003, 988: 189–192, 10.1016/S0006-8993(03)03361-4, 14519541, 1:CAS:528:DC%2BD3sXnslSktrw%3D

    Article  CAS  PubMed  Google Scholar 

  75. Fu X, Zhu Z H, Wang Y Q, et al. Regulation of proinflammatory cytokines gene expression by nociceptin/orphanin FQ in the spinal cord and the cultured astrocytes. Neuroscience, 2007, 144: 275–285, 10.1016/j.neuroscience.2006.09.016, 17069983, 1:CAS:528:DC%2BD28Xht12qsLjK

    Article  CAS  PubMed  Google Scholar 

  76. Mao-Ying Q L, Cui K M, Liu Q, et al. Stage-dependent analgesia of electro-acupuncture in a mouse model of cutaneous cancer pain. Eur J Pain, 2006, 10: 689–694, 10.1016/j.ejpain.2005.11.001, 16376128

    Article  PubMed  Google Scholar 

  77. Zhang Y Q, Ji G C, Wu G C, et al. Excitatory amino acid receptor antagonists and electroacupuncture synergetically inhibit carrageenan-induced behavioral hyperalgesia and spinal fos expression in rats. Pain, 2002, 99: 525–535, 10.1016/S0304-3959(02)00268-3, 12406529, 1:CAS:528:DC%2BD38Xot1aitrg%3D

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Y Q, Ji G C, Wu G C, et al. Kynurenic acid enhances electroacupuncture analgesia in normal and carrageenan-injected rats. Brain Res, 2003, 966: 300–307, 10.1016/S0006-8993(02)04228-2, 12618353, 1:CAS:528:DC%2BD3sXhs1agsLo%3D

    Article  CAS  PubMed  Google Scholar 

  79. Mi W L, Mao-Ying Q L, Liu Q, et al. Synergistic anti-hyperalgesia of electroacupuncture and low dose of celecoxib in monoarthritic rats: involvement of the cyclooxygenase activity in the spinal cord. Brain Res Bull, 2008, 77: 98–104, 10.1016/j.brainresbull.2008.04.008, 18721668, 1:CAS:528:DC%2BD1cXhtVamtrrE

    Article  CAS  PubMed  Google Scholar 

  80. Sun S, Cao H, Han M, et al. Evidence for suppression of electroacupuncture on spinal glial activation and behavioral hypersensitivity in a rat model of monoarthritis. Brain Res Bull, 2008, 75: 83–93, 10.1016/j.brainresbull.2007.07.027, 18158100, 1:STN:280:DC%2BD2sjmtl2lsA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  81. Zhang WT, Jin Z, Cui G H, et al. Relations between brain network activation and analgesic effect induced by low vs. high frequency electrical acupoint stimulation in different subjects: a functional magnetic resonance imaging study. Brain Res, 2003, 982: 168–178, 10.1016/S0006-8993(03)02983-4, 12915252, 1:CAS:528:DC%2BD3sXmt1aitLk%3D

    Article  CAS  PubMed  Google Scholar 

  82. Wang J Y, Zhang H T, Han J S, et al. Differential modulation of nociceptive neural responses in medial and lateral pain pathways by peripheral electrical stimulation: a multichannel recording study. Brain Res, 2004, 1014: 197–208, 10.1016/j.brainres.2004.04.029, 15213004, 1:CAS:528:DC%2BD2cXltVChurg%3D

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X. Pain research in China. Sci. China Life Sci. 53, 356–362 (2010). https://doi.org/10.1007/s11427-010-0065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0065-9

Keywords

Navigation