Skip to main content
Log in

Ion channels in neuronal survival

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The study of ion channels represents one of the most active fields in neuroscience research in China. In the last 10 years, active research in various Chinese neuroscience institutions has sought to understand the mechanisms responsible for sensory processing, neural development and neurogenesis, neural plasticity, as well as pathogenesis. In addition, extensive studies have been directed to measure ion channel activity, structure-function relationships, as well as many other biophysical and biochemical properties. This review focuses on the progress achieved in the investigation of ion channels in neuronal survival during the past 10 years in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolmetsch R E, Pajvani U, Fife K, et al. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science, 2001, 294: 333–339, 10.1126/science.1063395, 1:CAS:528:DC%2BD3MXnsFGqsL4%3D, 11598293

    Article  CAS  PubMed  Google Scholar 

  2. Lipton P. Ischemic cell death in brain neurons. Physiol Rev, 1999, 79: 1431–1568, 1:STN:280:DyaK1MvjvVagtw%3D%3D, 10508238

    Article  CAS  PubMed  Google Scholar 

  3. Gruol D L, Barker J L, Huang L Y, et al. Hydrogen ions have multiple effects on the excitability of cultured mammalian neurons. Brain Res, 1980, 183: 247–252, 10.1016/0006-8993(80)90138-9, 1:CAS:528:DyaL3cXhtVGjtL8%3D, 7357408

    Article  CAS  PubMed  Google Scholar 

  4. Krishtal O A, Pidoplichko V I. A receptor for protons in the membrane of sensory neurons may participate in nociception. Neuroscience, 1981, 6: 2599–2601, 10.1016/0306-4522(81)90105-6, 1:STN:280:DyaL387gsVehtg%3D%3D, 6275299

    Article  CAS  PubMed  Google Scholar 

  5. Varming T. Proton-gated ion channels in cultured mouse cortical neurons. Neuropharmacology, 1999, 38: 1875–1881, 10.1016/S0028-3908(99)00079-9, 1:CAS:528:DyaK1MXotVOqs7k%3D, 10608282

    Article  CAS  PubMed  Google Scholar 

  6. Alvarez de la Rosa D, Canessa C M, Fyfe G K, et al. Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol, 2000, 62: 573–594, 10.1146/annurev.physiol.62.1.573, 1:STN:280:DC%2BD3cvktFKgtg%3D%3D, 10845103

    Article  CAS  PubMed  Google Scholar 

  7. Waldmann R, Champigny G, Bassilana F, et al. A proton-gated cation channel involved in acid-sensing. Nature, 1997, 386: 173–177, 10.1038/386173a0, 1:CAS:528:DyaK2sXhvFSqtrY%3D, 9062189

    Article  CAS  PubMed  Google Scholar 

  8. Krishtal O. The ASICs: Signaling molecules? Modulators? Trends Neurosci, 2003, 26: 477–483, 10.1016/S0166-2236(03)00210-8, 1:CAS:528:DC%2BD3sXms1yhu74%3D, 12948658

    Article  CAS  PubMed  Google Scholar 

  9. Wu L J, Duan B, Mei Y D, et al. Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem, 2004, 279: 43716–43724, 10.1074/jbc.M403557200, 1:CAS:528:DC%2BD2cXot1ygsro%3D, 15302881

    Article  CAS  PubMed  Google Scholar 

  10. Yermolaieva O, Leonard A S, Schnizler M K, et al. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci USA, 2004, 101: 6752–6757, 10.1073/pnas.0308636100, 1:CAS:528:DC%2BD2cXjvVyhs7s%3D, 15082829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bianchi L, Driscoll M. Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron, 2002, 34: 337–340, 10.1016/S0896-6273(02)00687-6, 1:CAS:528:DC%2BD38XjsFGgurY%3D, 11988165

    Article  CAS  PubMed  Google Scholar 

  12. Wemmie J A, Chen J, Askwith C C, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron, 2002, 34: 463–477, 10.1016/S0896-6273(02)00661-X, 1:CAS:528:DC%2BD38XjsFGgu7c%3D, 11988176

    Article  CAS  PubMed  Google Scholar 

  13. Siesjo B K, Katsura K, Kristian T. Acidosis-related damage. Adv Neurol, 1996, 71: 209–233; discussion 234–206, 1:STN:280:DyaK28zot12gtQ%3D%3D, 8790801

    CAS  PubMed  Google Scholar 

  14. Jasti J, Furukawa H, Gonzales E B, et al. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature, 2007, 449: 316–323, 10.1038/nature06163, 1:CAS:528:DC%2BD2sXhtVKiu7vE, 17882215

    Article  CAS  PubMed  Google Scholar 

  15. Simon R P, Swan J H, Griffiths T, et al. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science, 1984, 226: 850–852, 10.1126/science.6093256, 1:CAS:528:DyaL2MXjsl0%3D, 6093256

    Article  CAS  PubMed  Google Scholar 

  16. Sattler R, Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol, 2001, 24: 107–129, 10.1385/MN:24:1-3:107, 1:CAS:528:DC%2BD38XnsVaqug%3D%3D, 11831548

    Article  CAS  PubMed  Google Scholar 

  17. Xiong Z G, Zhu X M, Chu X P, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell, 2004, 118: 687–698, 10.1016/j.cell.2004.08.026, 1:CAS:528:DC%2BD2cXnvFehtb4%3D, 15369669

    Article  CAS  PubMed  Google Scholar 

  18. Gao J, Duan B, Wang D G, et al. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron, 2005, 48: 635–646, 10.1016/j.neuron.2005.10.011, 1:CAS:528:DC%2BD2MXhtlSms7nJ, 16301179

    Article  CAS  PubMed  Google Scholar 

  19. Pignataro G, Simon R P, Xiong Z G. Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain, 2007, 130: 151–158, 10.1093/brain/awl325, 17114797

    Article  PubMed  Google Scholar 

  20. Besancon E, Guo S, Lok J, et al. Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci, 2008, 29: 268–275, 10.1016/j.tips.2008.02.003, 1:CAS:528:DC%2BD1cXlslWqu7k%3D, 18384889

    Article  CAS  PubMed  Google Scholar 

  21. Isaev N K, Stelmashook E V, Plotnikov E Y, et al. Role of acidosis, NMDA receptors, and acid-sensitive ion channel 1a (ASIC1a) in neuronal death induced by ischemia. Biochemistry (Mosc), 2008, 73: 1171–1175, 10.1134/S0006297908110011, 1:CAS:528:DC%2BD1cXhsVegu7vO

    Article  CAS  Google Scholar 

  22. Chittajallu R, Braithwaite S P, Clarke V R, et al. Kainate receptors: Subunits, synaptic localization and function. Trends Pharmacol Sci, 1999, 20: 26–35, 10.1016/S0165-6147(98)01286-3, 1:CAS:528:DyaK1MXks1amsb0%3D, 10101959

    Article  CAS  PubMed  Google Scholar 

  23. Chung H J, Xia J, Scannevin R H, et al. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci, 2000, 20: 7258–7267, 1:CAS:528:DC%2BD3cXnt1ajsb0%3D, 11007883

    CAS  PubMed  Google Scholar 

  24. Tian H, Zhang Q G, Zhu G X, et al. Activation of c-Jun NH2-terminal kinase 3 is mediated by the GluR6.PSD-95.MLK3 signaling module following cerebral ischemia in rat hippocampus. Brain Res, 2005, 1061: 57–66, 1:CAS:528:DC%2BD2MXhtFOgs77O, 16256962

    Article  CAS  PubMed  Google Scholar 

  25. Pei D S, Sun Y F, Guan Q H, et al. Postsynaptic density protein 95 antisense oligodeoxynucleotides inhibits the activation of MLK3 and JNK3 via the GluR6. PSD-95.MLK3 signaling module after transient cerebral ischemia in rat hippocampus. Neurosci Lett, 2004, 367: 71–75, 10.1016/j.neulet.2004.05.082, 1:CAS:528:DC%2BD2cXmsleksr0%3D, 15308300

    Article  CAS  PubMed  Google Scholar 

  26. Pei D S, Wang X T, Liu Y, et al. Neuroprotection against ischaemic brain injury by a GluR6–9c peptide containing the TAT protein transduction sequence. Brain, 2006, 129: 465–479, 10.1093/brain/awh700, 16330502

    Article  PubMed  Google Scholar 

  27. Pei D S, Guan Q H, Sun Y F, et al. Neuroprotective effects of GluR6 antisense oligodeoxynucleotides on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 region. J Neurosci Res, 2005, 82: 642–649, 10.1002/jnr.20669, 1:CAS:528:DC%2BD2MXhtlekt7rK, 16267825

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Li C, Pei D S, et al. GluR6-containing KA receptor mediates the activation of p38 MAP kinase in rat hippocampal CA1 region during brain ischemia injury. Hippocampus, 2009, 19: 79–89, 10.1002/hipo.20479, 1:CAS:528:DC%2BD1MXitl2qurs%3D, 18680160

    Article  CAS  PubMed  Google Scholar 

  29. Gu Z, Jiang Q, Zhang G. c-Jun N-terminal kinase activation in hippocampal CA1 region was involved in ischemic injury. Neuroreport, 2001, 12: 897–900, 10.1097/00001756-200104170-00006, 1:CAS:528:DC%2BD3MXjtVWhu74%3D, 11303755

    Article  CAS  PubMed  Google Scholar 

  30. Tian H, Zhang G, Li H, et al. Antioxidant NAC and AMPA/KA receptor antagonist DNQX inhibited JNK3 activation following global ischemia in rat hippocampus. Neurosci Res, 2003, 46: 191–197, 1:CAS:528:DC%2BD3sXktFWlt7g%3D, 12767482

    Article  CAS  PubMed  Google Scholar 

  31. Xu J, Liu Y, Zhang G Y. Neuroprotection of GluR5-containing kainate receptor activation against ischemic brain injury through decreasing tyrosine phosphorylation of N-methyl-D-aspartate receptors mediated by Src kinase. J Biol Chem, 2008, 283: 29355–29366, 10.1074/jbc.M800393200, 1:CAS:528:DC%2BD1cXht1GlsbrL, 18678878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Choi D W. Calcium: Still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci, 1995, 18: 58–60, 10.1016/0166-2236(95)93870-4, 1:CAS:528:DyaK2MXjtlGiurw%3D, 7537408

    Article  CAS  PubMed  Google Scholar 

  33. Li X M, Yang J M, Hu D H, et al. Contribution of downregulation of L-type calcium currents to delayed neuronal death in rat hippocampus after global cerebral ischemia and reperfusion. J Neurosci, 2007, 27: 5249–5259, 10.1523/JNEUROSCI.0802-07.2007, 1:CAS:528:DC%2BD2sXmtVWrtrc%3D, 17494711

    Article  CAS  PubMed  Google Scholar 

  34. Jia Y, Zhou J, Tai Y, et al. TRPC channels promote cerebellar granule neuron survival. Nat Neurosci, 2007, 10: 559–567, 10.1038/nn1870, 1:CAS:528:DC%2BD2sXksFShs7Y%3D, 17396124

    Article  CAS  PubMed  Google Scholar 

  35. Minke B. Drosophila mutant with a transducer defect. Biophys Struct Mech, 1977, 3: 59–64, 10.1007/BF00536455, 1:STN:280:DyaE2s7lvVCgsw%3D%3D, 870103

    Article  CAS  PubMed  Google Scholar 

  36. Montell C, Jones K, Hafen E, et al. Rescue of the Drosophila phototransduction mutation trp by germline transformation. Science, 1985, 230: 1040–1043, 10.1126/science.3933112, 1:CAS:528:DyaL28XivFOitA%3D%3D, 3933112

    Article  CAS  PubMed  Google Scholar 

  37. Montell C, Birnbaumer L, Flockerzi V, et al. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell, 2002, 9: 229–231, 10.1016/S1097-2765(02)00448-3, 1:CAS:528:DC%2BD38XhvFKhurc%3D, 11864597

    Article  CAS  PubMed  Google Scholar 

  38. Segal R A, Greenberg M E. Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci, 1996, 19: 463–489, 1:CAS:528:DyaK28XhsVCksrY%3D, 8833451

    Article  CAS  PubMed  Google Scholar 

  39. Clapham D E. TRP channels as cellular sensors. Nature, 2003, 426: 517–524, 10.1038/nature02196, 1:CAS:528:DC%2BD3sXpsVejtrc%3D, 14654832

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YiZheng Wang or TianLe Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Xu, T. Ion channels in neuronal survival. Sci. China Life Sci. 53, 342–347 (2010). https://doi.org/10.1007/s11427-010-0060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0060-1

Keywords

Navigation