Skip to main content
Log in

Intrinsically photosensitive retinal ganglion cells

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

A new mammalian photoreceptor was recently discovered to reside in the ganglion cell layer of the inner retina. These intrinsically photosensitive retinal ganglion cells (ipRGCs) express a photopigment, melanopsin that confers upon them the ability to respond to light in the absence of all rod and cone photoreceptor input. Although relatively few in number, ipRGCs extend their dendrites across large expanses of the retina making them ideally suited to function as irradiance detectors to assess changes in ambient light levels. Phototransduction in ipRGCs appears to be mediated by transient receptor potential channels more closely resembling the phototransduction cascade of invertebrate than vertebrate photoreceptors. ipRGCs convey irradiance information centrally via the optic nerve to influence several functions. ipRGCs are the primary retinal input to the hypothalamic suprachiasmatic nucleus (SCN), a circadian oscillator and biological clock, and this input entrains the SCN to the day/night cycle. ipRGCs contribute irradiance signals that regulate pupil size and they also provide signals that interface with the autonomic nervous system to regulate rhythmic gene activity in major organs of the body. ipRGCs also provide excitatory drive to dopaminergic amacrine cells in the retina, providing a novel basis for the restructuring of retinal circuits by light. Here we review the ground-breaking discoveries, current progress and directions for future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cajal S Ramón y. Les Nouvelles Ideés sur la Structure du Système Nerveux chez l’Homme et chez les Vértebrés. Paris: Reinwald, 1894.

    Book  Google Scholar 

  2. Farber D B, Flannery J G, Bowes-Rickman C. The rd mouse story: Seventy years of research on an animal model of inherited retinal degeneration. Prog Retinal Eye Res, 1994, 13: 31–64, 10.1016/1350-9462(94)90004-3, 1:CAS:528:DyaK2cXksFCksLw%3D

    Article  CAS  Google Scholar 

  3. Keeler C E. Iris movements in blind mice. Am J Physiol, 1927, 81: 107–112

    Google Scholar 

  4. Ebihara S, Tsuji K. Entrainment of the circadian activity rhythm to the light dark cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and normal C57BL mouse. Physiol Behav, 1980, 24: 523–527, 10.1016/0031-9384(80)90246-2, 7375573, 1:STN:280:DyaL3c7ptVGgsQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  5. Foster R G, Provencio I, Hudson D, et al. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A, 1991, 169: 39–50, 10.1007/BF00198171, 1941717, 1:STN:280:DyaK38%2FksFKgtA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  6. Dräger U C, Hubel D H. Studies of visual function and its decay in mice with hereditary retinal degeneration. J Comp Neurol, 1978, 180: 85–114, 10.1002/cne.901800107, 649791

    Article  PubMed  Google Scholar 

  7. Nelson R J, Zucker I. Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. J Comp Biochem Physiol, 1981, 69A: 145–148, 10.1016/0300-9629(81)90651-4

    Article  Google Scholar 

  8. Freedman M S, Lucas R J, Soni B, et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science, 1999, 284: 502–504, 10.1126/science.284.5413.502, 10205061, 1:CAS:528:DyaK1MXisFOku7s%3D

    Article  CAS  PubMed  Google Scholar 

  9. Lucas R J, Freedman M S, Munoz M, et al. Regulation of mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science, 1999, 284: 505–507, 10.1126/science.284.5413.505, 10205062, 1:CAS:528:DyaK1MXisFOrsrg%3D

    Article  CAS  PubMed  Google Scholar 

  10. Yoshimura T, Ebihara S. Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+) mice. J Comp Physiol A, 1996, 178: 797–802, 10.1007/BF00225828, 8667293, 1:STN:280:DyaK28zgsVektQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  11. Lucas R J, Douglas R H, Foster R G. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci, 2001, 4: 621–626, 10.1038/88443, 11369943, 1:CAS:528:DC%2BD3MXktFOqtrs%3D

    Article  CAS  PubMed  Google Scholar 

  12. Brainard G C, Hanifin J P, Rollag M D, et al. Human melatonin regulation is not mediated by the three cone photopic visual system. J Clin Endocrinol Met, 2001, 86: 433–436, 10.1210/jc.86.1.433, 1:CAS:528:DC%2BD3MXhtVGnt7Y%3D

    Article  CAS  Google Scholar 

  13. Thapan K, Arendt J, Skene D J. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol, 2001, 535: 261–267, 10.1111/j.1469-7793.2001.t01-1-00261.x, 11507175, 1:CAS:528:DC%2BD3MXms12lurc%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Provencio I, Jiang G, de Grip W J, et al. Melanopsin: An opsin in melanophores, brain and eye. Proc Natl Acad Sci USA 1998, 95: 340–345, 10.1073/pnas.95.1.340, 9419377, 1:CAS:528:DyaK1cXjtl2htw%3D%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Provencio I, Rodriguez I R, Jiang G, et al. A novel human opsin in the innerretina. J Neurosci, 2000, 20: 600–605, 10632589, 1:CAS:528:DC%2BD3cXhtF2hsb8%3D

    CAS  PubMed  Google Scholar 

  16. Berson D M, Dunn F A, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science, 2002, 295:1070–1073, 10.1126/science.1067262, 11834835, 1:CAS:528:DC%2BD38Xht1Gru7g%3D

    Article  CAS  PubMed  Google Scholar 

  17. Hattar S, Liao H W, Takao M, et al. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science, 2002, 295: 1065–1070, 10.1126/science.1069609, 11834834, 1:CAS:528:DC%2BD38Xht1Gru7o%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruby N F, Brennan T J, Xie X, et al. Role of melanopsin in circadian responses to light. Science, 2002, 298: 2211–2213, 10.1126/science.1076701, 12481140, 1:CAS:528:DC%2BD38XpsVSktLc%3D

    Article  CAS  PubMed  Google Scholar 

  19. Panda S, Sato T K, Castrucci A M, et al. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science, 2002, 298: 2213–2216, 10.1126/science.1076848, 12481141, 1:CAS:528:DC%2BD38XpsVSktb4%3D

    Article  CAS  PubMed  Google Scholar 

  20. Lucas R J, Hattar S, Takao M, et al. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science, 2003, 299: 245–247, 10.1126/science.1077293, 12522249, 1:CAS:528:DC%2BD3sXhs1Gktw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  21. Panda S, Provencio I, Tu D C, et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science, 2003, 301: 525–527, 10.1126/science.1086179, 12829787, 1:CAS:528:DC%2BD3sXls1Cqsrg%3D

    Article  CAS  PubMed  Google Scholar 

  22. Belenky M A, Smeraski C A, Provencio I, et al. Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol, 2003, 460: 380–393, 10.1002/cne.10652, 12692856

    Article  PubMed  Google Scholar 

  23. Perez-Leon J A, Warren E J, Allen C N, et al. Synaptic inputs to retinal ganglion cells that set the circadian clock. Eur J Neurosci, 2006, 24: 1117–1123, 10.1111/j.1460-9568.2006.04999.x, 16930437

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wong K Y, Dunn F A, Graham D M, et al. Synapic influences on rat ganglion-cell photoreceptors. J Physiol, 2007, 582: 279–296, 10.1113/jphysiol.2007.133751, 17510182, 1:CAS:528:DC%2BD2sXotFals7o%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pickard G E, Baver S B, Ogilvie M D, et al. Light-induced Fos expression in intrinsically photosensitive retinal ganglion cells in melanopsin knockout (Opn4-/-) mice. PLoS One, 2009, 4: e4984, 10.1371/journal.pone.0004984, 19319185, 1:CAS:528:DC%2BD1MXktlajtbg%3D

    Article  PubMed  PubMed Central  Google Scholar 

  26. Baver S B, Pickard G E, Sollars P J, et al. Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci, 2008, 27: 1763–1770, 10.1111/j.1460-9568.2008.06149.x, 18371076

    Article  PubMed  Google Scholar 

  27. Güler A D, Ecker J L, Lall G S, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature, 2008, 453: 102–105, 10.1038/nature06829, 18432195, 1:CAS:528:DC%2BD1cXltlags7g%3D

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gooley J J, Lu J, Chou T C, et al. Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neurosci, 2001, 4: 1165, 10.1038/nn768, 11713469, 1:CAS:528:DC%2BD3MXovVCqur4%3D

    Article  CAS  PubMed  Google Scholar 

  29. Morin L P, Blanchard J H, Provencio I. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol, 2003, 465: 401–416, 10.1002/cne.10881, 12966564

    Article  PubMed  Google Scholar 

  30. Sollars P J, Smeraski C A, Kaufman J D, et al. Melanopsin and nonmelanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus. Vis Neurosci, 2003, 20: 601–610, 10.1017/S0952523803206027, 15088713

    Article  PubMed  Google Scholar 

  31. Torii M, Kojima D, Okano T, et al. Two isoforms of chicken melanopsins show blue light sensitivity. FEBS Lett, 2007, 581: 5327–5331, 10.1016/j.febslet.2007.10.019, 17977531, 1:CAS:528:DC%2BD2sXht1KrtbzN

    Article  CAS  PubMed  Google Scholar 

  32. Pires S S, Hughes S, Turton M, et al. Differential expression of two distinct functional isoforms of melanopsin (Opn4) in the mammalian retina. J Neurosci, 2009, 29: 12332–12342, 10.1523/JNEUROSCI.2036-09.2009, 19793992, 1:CAS:528:DC%2BD1MXht12qu7rK

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Newman L A, Walker M T, Brown R L, et al. Melanopsin forms a functional short-wavelength photopigment. Biochem, 2003, 42: 12734–12738, 10.1021/bi035418z, 1:CAS:528:DC%2BD3sXotVKltr8%3D

    Article  CAS  Google Scholar 

  34. Qui X, Kumbalasiri T, Carlson S M, et al. Induction of photosensitivity by heterologous expression of melanopsin. Nature, 2005, 433: 745–749, 10.1038/nature03345, 1:CAS:528:DC%2BD2MXhtleqsbw%3D

    Article  Google Scholar 

  35. Melyan Z, Tarttelin E E, Bellingham, et al. Addition of human melanopsin renders mammalian cells photoresponsive. Nature, 2005, 433: 741–745, 10.1038/nature03344, 15674244, 1:CAS:528:DC%2BD2MXhtleqsb8%3D

    Article  CAS  PubMed  Google Scholar 

  36. Panda S, Nayak S K, Campo B, et al. Illimination of the melanopsin signaling pathway. Science, 2005, 307: 600–604, 10.1126/science.1105121, 15681390, 1:CAS:528:DC%2BD2MXmslOhsA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  37. Dacey D M, Lioa H W, Peterson B B, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature, 2005, 433: 749–754, 10.1038/nature03387, 15716953, 1:CAS:528:DC%2BD2MXhtleqsbo%3D

    Article  CAS  PubMed  Google Scholar 

  38. Koyanagi M, Kubokawa K, Tsukamoto H, et al. Cephalochordate melanopsin: Evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol, 2005, 15: 1065–1069, 10.1016/j.cub.2005.04.063, 15936279, 1:CAS:528:DC%2BD2MXltVOmsLs%3D

    Article  CAS  PubMed  Google Scholar 

  39. Bailes H J, Lucas R J. Melanopsin and inner retinal photoreception. Cell Mol Life Sci, 2009, in press

  40. Do M T, Kang S H, Xue T, et al. Photon capture and signaling by melanopsin retinal ganglion cells. Nature, 2009, 457: 281–287, 10.1038/nature07682, 19118382, 1:CAS:528:DC%2BD1MXlvFWguw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  41. Brown T M, Lucas R J. Melanopsin phototransduction: great excitement over a poor catch. Curr Biol, 2009, 19: R256–R257, 10.1016/j.cub.2009.01.034, 19321143, 1:CAS:528:DC%2BD1MXjsFWru7s%3D

    Article  CAS  PubMed  Google Scholar 

  42. Chen C K, Burns M E, Spencer M, et al. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Natl Acad Sci USA, 1999, 96: 3718–3722, 10.1073/pnas.96.7.3718, 10097103, 1:CAS:528:DyaK1MXjslCiu7w%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vidal L, Morin L P. Absence of normal photic integration in the circadian visual system: Response to millisecond light flashes. J Neurosci, 2007, 27: 3375–3382, 10.1523/JNEUROSCI.5496-06.2007, 17392453, 1:CAS:528:DC%2BD2sXktlOjsrg%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berson D M. Strange vision: Ganglion cells as circadian photoreceptors. Trends Neurosci, 2003, 26: 314–320, 10.1016/S0166-2236(03)00130-9, 12798601, 1:CAS:528:DC%2BD3sXksVyqurk%3D

    Article  CAS  PubMed  Google Scholar 

  45. Isoldi M C, Rollag M D, Castrucci A M, et al. Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci USA, 2005, 102: 1217–1221, 10.1073/pnas.0409252102, 15653769, 1:CAS:528:DC%2BD2MXhtFCitL4%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yau K W, Hardie R C. Phototransduction motifs and variations. Cell, 2009, 139: 247–264, 10.1016/j.cell.2009.09.029, 1:CAS:528:DC%2BD1MXhsFWht7zP

    Article  Google Scholar 

  47. Graham D M, Wong K Y, Shapiro P, et al. Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol, 2008, 99: 2522–2532, 10.1152/jn.01066.2007, 18305089, 1:CAS:528:DC%2BD1cXntFyktLk%3D

    Article  CAS  PubMed  Google Scholar 

  48. Brown R L, Matos M F, Wettschureck N, et al. G-protein signaling in melanopsin-containing retinal ganglion cells. ARVO, 2009, D711

  49. Warren E J, Allen C N, Brown R L, et al. The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci, 2006, 23: 2477–2487, 10.1111/j.1460-9568.2006.04777.x, 16706854

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sekaran S, Lall G S, Ralphs K L, et al. 2-aminoethoxydiphenylborane is an acute inhibitor of directly photosensitive retinal ganglion cell activity in vitro and in vivo. J Neurosci, 2007, 27: 3981–3986, 10.1523/JNEUROSCI.4716-06.2007, 17428972, 1:CAS:528:DC%2BD2sXks1Ontrw%3D

    Article  CAS  PubMed  Google Scholar 

  51. Hartwick ATE, Bramley J R, Yu J, et al. Light-evoked calcium re sponses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci, 2007, 27: 13468–13480, 10.1523/JNEUROSCI.3626-07.2007, 18057205, 1:CAS:528:DC%2BD1cXisVGltA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  52. Squires L D, Brown R L. DNA microarray analysis of melanopsin-containing retinal ganglion cells. ARVO, 2009, D172

  53. Sekaran S, Foster R G, Lucas R J, et al. Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Curr Biol, 2003, 13: 1290–1298, 10.1016/S0960-9822(03)00510-4, 12906788, 1:CAS:528:DC%2BD3sXmt1Kitrg%3D

    Article  CAS  PubMed  Google Scholar 

  54. Lin B, Koizumi A, Tanaka N, et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA 2008, 105: 16009–16014, 10.1073/pnas.0806114105, 18836071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sekaran S, Lupi D, Jones C J, et al. Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Curr Biol, 2005, 15: 1099–1107, 10.1016/j.cub.2005.05.053, 15964274, 1:CAS:528:DC%2BD2MXltlajtrY%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hannibal J, Georg B, Fahrenkrug J. Melanopsin changes in neonatal albino rat independent of rods and cones. Neuroreport, 2007, 18: 81–85, 10.1097/WNR.0b013e328010ff56, 17259866, 1:CAS:528:DC%2BD2sXhtVOqsrs%3D

    Article  CAS  PubMed  Google Scholar 

  57. Gonzalez-Menendez I, Contreras F, Cernuda-Cernuda R, et al. Daily rhythm of melanopsin-expressing cells in the mouse retina. Frontiers Cell Neurosci, 2009, 3: 1–7

    Article  Google Scholar 

  58. Koyanagi M, Kubokawa K, Tsukamoto H, et al. Cephalochoradate melanopsin: Evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol, 2005, 15: 1065–1069, 10.1016/j.cub.2005.04.063, 15936279, 1:CAS:528:DC%2BD2MXltVOmsLs%3D

    Article  CAS  PubMed  Google Scholar 

  59. Fu Y, Zhong H, Wang M H, et al. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc Natl Acad Sci USA, 2005, 102: 10339–10344, 10.1073/pnas.0501866102, 16014418, 1:CAS:528:DC%2BD2MXmvVeks7c%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mure L S, Rieux C, Hattar S, et al. Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo. J Biol Rhythms, 2007, 22: 411–424, 10.1177/0748730407306043, 17876062

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mure L S, Cornut P L, Rieux C, et al. Melanopsin bistability: A fly’s eye technology in the human retina. PLoS One, 2009, 4: e5991, 10.1371/journal.pone.0005991, 19551136, 1:CAS:528:DC%2BD1MXhtlyksrnE

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mawad K, Van Gelder R N. Absence of long-wavelength photic potentiation of murine intrinsically photosensitive retinal ganglion cell firing in vitro. J Biol Rhythms, 2008, 23: 387–391, 10.1177/0748730408323063, 18838602

    Article  PubMed  Google Scholar 

  63. Cooper H M, Mure L S. Expected and unexpected properties of melanopsin signaling. J Biol Rhythms, 2008, 23: 392–393, 10.1177/0748730408323064, 18838603

    Article  PubMed  Google Scholar 

  64. Van Gelder R N, Mawad K. Illuminating the mysteries of melanopsin and circadian photoreception. J Biol Rhythms, 2008, 23: 394–395, 10.1177/0748730408323066

    Article  Google Scholar 

  65. Walker M T, Brown R L, Cronin T W, et al. Photochemistry of retinal chromophore in mouse melanopsin. Proc Natl Acad Sci USA, 2008, 105: 8861–8865, 10.1073/pnas.0711397105, 18579788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pickard G E. The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection. J Comp Neurol, 1982, 211: 65–83, 10.1002/cne.902110107, 7174884, 1:STN:280:DyaL3s%2Fotlekug%3D%3D

    Article  CAS  PubMed  Google Scholar 

  67. Pickard G E. Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus. Neurosci Lett, 1985, 55: 211–217, 10.1016/0304-3940(85)90022-9, 4000547, 1:STN:280:DyaL2M3hsVKjsg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  68. Gooley J J, Lu J, Fischer D, et al. A broad role for melanopsin in nonvisual photoreception. J Neurosci, 2003, 23: 7093–7106, 12904470, 1:CAS:528:DC%2BD3sXmtlyhsbg%3D

    CAS  PubMed  Google Scholar 

  69. Hattar S, Kumar M, Park A, et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol, 2006, 497: 326–349, 10.1002/cne.20970, 16736474

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hattar S, Ecker J L, Dumitrescu O N, et al. Functions and target innervations of distinct subtypes of melanopsin cells. ARVO, 2009, D703

  71. Fu Y, Liao H W, Do M T H, et al. Non-image-forming ocular photoreception in vertebrates. Curr Opin Neurobiol, 2005, 15: 415–422, 10.1016/j.conb.2005.06.011, 16023851, 1:CAS:528:DC%2BD2MXntVOhsLg%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peirson S N, Halford S, Foster R G. The evolution of irradiance detection: melanopsin and the non-visual opsins. Phil Trans R Soc B, 2009, 364: 2849–2865, 10.1098/rstb.2009.0050, 19720649, 1:CAS:528:DC%2BD1MXht1Wis77J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zaida F, Hull J T, Peirson S N, et al. Short-wavelenfth light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol, 2007, 17: 2122–2128, 10.1016/j.cub.2007.11.034, 1:CAS:528:DC%2BD2sXhsVCksb3M

    Article  Google Scholar 

  74. Kong J H, Fish D R, Rockhill R L, et al. Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits. J Comp Neurol, 2005, 489: 293–310, 10.1002/cne.20631, 16025455

    Article  PubMed  Google Scholar 

  75. Famiglietti E V, Kolb H. Structural basis for on- and off-center responses in retinal ganglion cells. Science, 1976, 194: 193–195, 10.1126/science.959847, 959847

    Article  PubMed  Google Scholar 

  76. Nelson R, Famiglietti E V, Kolb H. Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. J Neurophysiol, 1978, 41: 472–483, 650277, 1:STN:280:DyaE1c7ntlWqtg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  77. Schmidt T M, Taniguchi K, Kofuji P. Intrinsic and extrinsic light responses in melanopsin-expressing cells during development. J Neurophysiol, 2008, 100: 371–384, 10.1152/jn.00062.2008, 18480363, 1:CAS:528:DC%2BD1cXpslKhtrs%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schmidt T M, Kofuji P. Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J Neurosci 2009, 29: 476–482, 10.1523/JNEUROSCI.4117-08.2009, 19144848, 1:CAS:528:DC%2BD1MXhtVKru7o%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hoshi H, Liu W-L, Massey S C, et al. ON inputs to the OFF layer: bipolar cells that break the stratification rules of the retina. J Neurosci, 2009, 29: 8875–8883, 10.1523/JNEUROSCI.0912-09.2009, 19605625, 1:CAS:528:DC%2BD1MXovFegtb4%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dumitrescu O N, Pucci F G, Wong K Y, et al. Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol, 2009, 517: 226–244, 10.1002/cne.22158, 19731338, 1:CAS:528:DC%2BD1MXht1Oit77E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pickard G E, Ralph M, Menaker M. The intergeniculate leaflet partially mediates the effects of light on circadian rhythms. J Biol Rhythms, 1987, 2: 35–56, 10.1177/074873048700200104, 2979650, 1:STN:280:DyaK387htVKjug%3D%3D

    Article  CAS  PubMed  Google Scholar 

  82. Pickard G E. Entrainment of the circadian rhythm of wheel running activity is phase shifted by ablation of the intergeniculate leaflet. Brain Res, 1989, 494: 151–154, 10.1016/0006-8993(89)90154-6, 2765914, 1:STN:280:DyaL1MzltlGhsg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  83. Gaus S E, Strecker R E, Tate B A, et al. Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neurosci, 2002, 115: 285–294, 10.1016/S0306-4522(02)00308-1, 1:CAS:528:DC%2BD38XotVWhur4%3D

    Article  CAS  Google Scholar 

  84. Lupi D, Oster H, Thompson S, et al. The acute light-induction of sleep is mediated by OPN-4 based photoreception. Nature Neurosci, 2008, 11: 1068–1073, 10.1038/nn.2179, 19160505, 1:CAS:528:DC%2BD1cXhtVamurzJ

    Article  CAS  PubMed  Google Scholar 

  85. Altimus C M, Güler A D, Villa K L, et al. Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci USA, 2008, 105: 19998–20003, 10.1073/pnas.0808312105, 19060203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsai J W, Hannibal J, Hagiwara G, et al. Melanopsin as a sleep modulator: circadian gating of direct effects of light on sleep and altered sleep homeostasis in Opn4−/− mice. PLos Biol, 2009, 7: e1000125, 10.1371/journal.pbio.1000125, 19513122, 1:CAS:528:DC%2BD1MXntlOqsLw%3D

    Article  PubMed  PubMed Central  Google Scholar 

  87. Witkovsky P. Dopamine and retinal function. Doc Ophthalmol, 2004, 108: 17–40, 10.1023/B:DOOP.0000019487.88486.0a, 15104164

    Article  PubMed  Google Scholar 

  88. Zhang D Q, Zhou T R, McMahon D G. Functional heterogeneity of retinal dopaminergic neurons underlying their multiple roles in vision. J Neurosci, 2007, 27: 692–699, 10.1523/JNEUROSCI.4478-06.2007, 17234601, 1:CAS:528:DC%2BD2sXhtFSku7o%3D

    Article  PubMed  Google Scholar 

  89. Zhang D Q, Wong K Y, Sollars P J, et al. Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci USA, 2008, 105:14181–14186, 10.1073/pnas.0803893105, 18779590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Smale L, Michels K M, Moore R Y, et al. Destruction of the hamster serotonergic system by 5,7-DHT: effects on circadian rhythm phase, entrainment and response to triazolam. Brain Res, 1990, 515: 9–19, 10.1016/0006-8993(90)90570-2, 2357582, 1:CAS:528:DyaK3cXksFans7c%3D

    Article  CAS  PubMed  Google Scholar 

  91. Morin L P, Blanchard J. Depletion of brain serotonin by 5,7-DHT modifies hamster circadian rhythm response to light. Brain Res, 1991, 566: 173–185, 10.1016/0006-8993(91)91696-X, 1814534, 1:CAS:528:DyaK38Xlt1WgsQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  92. Pickard G E, Weber T E, Scott P A, et al. 5HT1B receptor agonists inhibit light-induced phase shifts of the circadian activity rhythm and expression of the immediate-early gene c-fos in the suprachiasmatic nucleus. J Neurosci, 1996, 16: 8208–8220, 8987845, 1:CAS:528:DyaK28Xns1Shtro%3D

    CAS  PubMed  Google Scholar 

  93. Pickard G E, Smith B N, Belenky M, et al. 5HT1B receptor-mediated presynaptic inhibition of retinal input to the suprachiasmatic nucleus. J Neurosci, 1999, 19: 4034–4045, 10234032, 1:CAS:528:DyaK1MXjtFSjsb0%3D

    CAS  PubMed  Google Scholar 

  94. Sollars P J, Ogilvie M D, Simpson A M, et al. Photic entrainment is altered in the 5-HT1B receptor knockout mouse. J Biol Rhythms, 2006, 21: 21032, 10.1177/0748730405283765, 1:CAS:528:DC%2BD2sXlsVWgt7s%3D

    Article  Google Scholar 

  95. Lewy A J, Sack R L, Miller S, et al. Antidepressant and circadian phase-shifting effects of light. Science, 1987, 235: 352–354, 10.1126/science.3798117, 3798117, 1:STN:280:DyaL2s%2FpsVaitA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  96. Terman M, Terman J S. Light therapy. In: Kryger M H, Roth T, Dement W C, eds. Principles and Practice of Sleep Medicine, 4th ed. Philadelphia: Elsevier, 2005. 1424–1442

    Chapter  Google Scholar 

  97. Roecklein K A, Rohan K J, Duncan W C, et al. A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder. J Affect Disorders, 2009, 114: 279–285, 10.1016/j.jad.2008.08.005, 18804284, 1:CAS:528:DC%2BD1MXhvF2gtr8%3D

    Article  CAS  PubMed  Google Scholar 

  98. Avery D H, Dahl K, Savage M V, et al. Circadian temperature and cortisol rhythms during a constant routine are phase-delayed in hy persomnic winter depression. Biol Psychiatry, 1997, 41: 1109–1123, 10.1016/S0006-3223(96)00210-7, 9146822, 1:CAS:528:DyaK2sXjsFShs7Y%3D

    Article  CAS  PubMed  Google Scholar 

  99. Son G H, Chung S, Choe H K, et al. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc Natl Acad Sci USA, 2008, 105: 20970–20975, 10.1073/pnas.0806962106, 19091946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bornstein S R, Engeland W C, Ehrhart-Bornstein, et al. Dissociation of ACTH and glucocorticoids. Trends Endocrinol Metab, 2008, 19: 175–180, 10.1016/j.tem.2008.01.009, 18394919, 1:CAS:528:DC%2BD1cXns1Shtb0%3D

    Article  CAS  PubMed  Google Scholar 

  101. Oster H, Damerow S, Kiessling S, et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab, 2006, 4: 163–173, 10.1016/j.cmet.2006.07.002, 16890544, 1:CAS:528:DC%2BD28XovVOitLg%3D

    Article  CAS  PubMed  Google Scholar 

  102. Pickard G E, Silverman, A J. Direct retinal projections to the hypothalamus, piriform cortex and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish peroxidase technique. J Comp Neurol, 1981, 196: 155–172, 10.1002/cne.901960111, 7204664, 1:STN:280:DyaL3M7kt1ygsA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  103. Balsalobre A, Brown S A, Marcacci L, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science, 2000, 289: 2344–2347, 10.1126/science.289.5488.2344, 11009419, 1:CAS:528:DC%2BD3cXmvF2qsrg%3D

    Article  CAS  PubMed  Google Scholar 

  104. Lamont E W, Robinson B, Stewart J, et al. The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Natl Acad Sci USA, 2005, 102: 4180–4184, 10.1073/pnas.0500901102, 15746242, 1:CAS:528:DC%2BD2MXis12jtL4%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary E. Pickard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickard, G.E., Sollars, P.J. Intrinsically photosensitive retinal ganglion cells. Sci. China Life Sci. 53, 58–67 (2010). https://doi.org/10.1007/s11427-010-0024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0024-5

Keywords

Navigation