Skip to main content
Log in

Protocruzia, a highly ambiguous ciliate (Protozoa; Ciliophora): Very likely an ancestral form for Heterotrichea, Colpodea or Spirotrichea? With reevaluation of its evolutionary position based on multigene analyses

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The ciliate genus Protocruzia belongs to one of the most ambiguous taxa considering its systematic position, possible as a member of the classes Heterotrichea, Spirotrichea or Karyorelictea, which is tentatively placed into Spirotrichea in Lynn’s 2008 system. To test these hypotheses, multigene trees (Bayesian inference, evolutionary distance, maximum parsimony, and maximum likelihood) were constructed using the small subunit rRNA (SSU rRNA) gene, internal transcribed spacer 2 (ITS2) and a protein coding gene (histone H4). All analyses agree that: (1) four morphotypes of Protocruzia from different geographical origins group together and form a monophyletic clade, which cannot be assigned to any of the eleven described ciliate classes; (2) it is invariably positioned on an isolated branch separated from the class Spirotrichea suggesting that this clade should be clearly removed from Spirotrichea; (3) this leads us to hypothesize that this taxon may indeed represent a lineage on a class rank. Based on the fact that it is, both morphologically and in molecular features, closely related to heterotrichs, Colpodea and Oligohymenophorea, Protocruziida might be an ancestral form for the subphylum Intramacronucleata in the evolutionary line from the class Heterotrichea (subphylum Postciliodesmatophora) to higher taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kahl A. Urtiere oder Protozoa I: Wimptiere oder Ciliata (Infusoria), 3. Spirotricha. In: Dahl F. (ed.), Die Tierwelt Deutschlands Fischer, Jena. 1932, 25: 399–650

  2. Grolière C A, Puytorac P De, Detcheva R. A propos d’observations sur la stomatogenèse et l’ultrastructure du cilié Protocruzia tuzeti Villeneuve-Brachon, 1940. Protistologica, 1980, 16: 453–466

    Google Scholar 

  3. Lynn D H. The implications of recent descriptions of kinetid structure to the systematics of the ciliated protists. Protoplasma, 1991, 164: 123–142, 10.1007/BF01320819

    Article  Google Scholar 

  4. Lynn D H. Morphology or molecules: How we identify the major lineages of ciliates (Phylum Ciliophora)? Eur J Protistol, 2003, 39: 356–364, 10.1078/0932-4739-00004

    Article  Google Scholar 

  5. Hammerschmidt B, Schlegel M, Lynn D H, et al. Insights into the evolution of nuclear dualism in the ciliates revealed by phylogenetic analysis of rRNA sequences. J Eukaryot Microbiol, 1996, 43: 225–230, 10.1111/j.1550-7408.1996.tb01396.x, 1:CAS:528:DyaK28XjsVeltLk%3D, 8640192

    Article  CAS  PubMed  Google Scholar 

  6. Song W, Wilbert N. Morphological investigations on some free living ciliates (Protozoa, Ciliophora) from China seas with description of a new hypotrichous genus, Hemigastrostyla nov. gen. Arch Protistenkd, 1997, 148: 413–444

    Article  Google Scholar 

  7. Bernhard D D, Schlegel M. Evolution of histone H4 and H3 gene in different ciliate lineages. J Mol Evol, 1998, 46: 344–354, 10.1007/PL00006311, 1:CAS:528:DyaK1cXht1Sku7k%3D, 9493359

    Article  CAS  PubMed  Google Scholar 

  8. Shin M K, Hwang U W, Kim W, et al. Phylogenetic position of the ciliates Phacodinium (order Phacodiniida) and Protocruzia (subclass Protocruziidia) and systematics of the spirotrich ciliates examined by small subunit ribosomal RNA gene sequences. Eur J Protistol, 2000, 36: 293–302

    Article  Google Scholar 

  9. Small E B, Lynn D H. Phylum Ciliophora, 1985, 393–575. In: Lee J J, Hutner S H & Bovee E C. (eds.) An Illustrated Guide to the Protozoa. Society of Protozoologists, Lawrence, Kansas.

    Google Scholar 

  10. Corliss J O. The Ciliated Protozoa: Characterization, Classification and Guide to the Literature. 2nd Edition. New York: Pergamon Press. 1979

    Google Scholar 

  11. Lynn D H. The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature. 3rd edn. Dordrecht: Springer, 2008

    Google Scholar 

  12. Small E B, Lynn D H. A new macrosystem for the Phylum Ciliophora Doflein, 1901. BioSystems, 1981, 14: 387–401, 10.1016/0303-2647(81)90045-9, 1:STN:280:DyaL387mtFarsg%3D%3D, 7337814

    Article  CAS  PubMed  Google Scholar 

  13. De Puytorac P. Phylum Ciliophora Doflein, 1901. In: P. P. de, (ed.) Traité de Zoologie, Tome II, Infusoires Cilie’s, Fasc. 2, Systématique. Masson, Paris. 1994.

    Google Scholar 

  14. De Puytorac P, Grain J, Mignot J P. Précis de Protistologie. Société Nouvelle des Editions Boubée, Paris. 1987.

    Google Scholar 

  15. Lynn D H, Small E B. Phylum Ciliophora Doflein, 1901. In: Lee J J, Bradbury P C, Leedale G F. (Eds.) An illustrated guide to the protozoa. 2nd Ed. Lawrence: Allen Press Inc., 2002. 371–656

    Google Scholar 

  16. Adl S M, Simpson A G B, Farmer M A, et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol, 2005, 52: 399–451, 10.1111/j.1550-7408.2005.00053.x, 16248873

    Article  PubMed  Google Scholar 

  17. Longet D, Burki F, Flakowski J, et al. Multigene evidence for close evolutionary relations between Gromia and Foraminifera. Acta Protozool, 2004, 43: 303–311, 1:CAS:528:DC%2BD2MXisVOmsQ%3D%3D

    CAS  Google Scholar 

  18. Simpson A G B, Inagaki Y, Roger A J. Comprehensive multi-gene phylogenies of excavate protists reveal the evolutionary positions of ‘primitive’ eukaryotes. Mol Biol Evol, 2006, 23: 615–625, 10.1093/molbev/msj068, 1:CAS:528:DC%2BD28XitVagsrk%3D, 16308337

    Article  CAS  PubMed  Google Scholar 

  19. Grant J, Tekle Y I, Anderson O R, et al. Multigene evidence for the placement of a heterotrophic amoeboid lineage Leukarachnion sp. among photosynthetic stramenopiles. Protist, 2009, 160: 376–385, 10.1016/j.protis.2009.01.001, 19282238

    Article  PubMed  Google Scholar 

  20. Hu X. Cortical structure in non-dividing and dividing Diophrys japanica spec. nov. (Ciliophora, Euplotida) with notes on morphological variation. Eur J Protistol, 2008, 44: 115–129, 10.1016/j.ejop.2007.08.007, 18023157

    Article  PubMed  Google Scholar 

  21. Wilbert N. Eine verbesserte Technik der Protargolimprägnation für Ciliaten. Mikrokosmos, 1975, 64: 171–179

    Google Scholar 

  22. Gao S, Chen Z, Shao C, et al. Reconsideration of the phylogenetic position of Frontonia-related Peniculia (Ciliophora, Protozoa) inferred from the small subunit ribosomal RNA gene sequences. Acta Protozool, 2008, 47: 47–54, 1:CAS:528:DC%2BD1cXmsV2lsr4%3D

    CAS  Google Scholar 

  23. Medlin L, Elwood H J, Stickel S, et al. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene, 1988, 71: 491–499, 10.1016/0378-1119(88)90066-2, 1:CAS:528:DyaL1MXovFyruw%3D%3D, 3224833

    Article  CAS  PubMed  Google Scholar 

  24. Miao M, Song W, Clamp J C, et al. Further consideration of the phylogeny of some “traditional” heterotrichs (Protista, Ciliophora) of uncertain affinities, based on new sequences of the small subunit rRNA gene. J Eukaryot Micribiol, 2009, 56: 244–250, 10.1111/j.1550-7408.2009.00391.x, 1:CAS:528:DC%2BD1MXnsVWrtL4%3D

    Article  CAS  Google Scholar 

  25. Jeanmougin F, Thompson J D, Gouy M, et al. Multiple sequence alignment with Clustal X. Trends. Biochem Sci, 1998, 23: 403–405, 10.1016/S0968-0004(98)01285-7, 1:CAS:528:DyaK1cXntlansLg%3D, 9810230

    Article  CAS  PubMed  Google Scholar 

  26. Ronquist F, Huelsenbeck J P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, 19: 1572–1574, 10.1093/bioinformatics/btg180, 1:CAS:528:DC%2BD3sXntlKms7k%3D, 12912839

    Article  CAS  PubMed  Google Scholar 

  27. Nylander J A A. MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden. 2004.

    Google Scholar 

  28. Felsenstein J. “PHYLIP: Phylogeny Inference Package,” Version 3.57c. Department of Genetics, University of Washington, Seattle, WA. 1995.

    Google Scholar 

  29. Kimura M. A simple method of estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 1980, 16: 111–120, 10.1007/BF01731581, 1:CAS:528:DyaL3MXmtFSktg%3D%3D, 7463489

    Article  CAS  PubMed  Google Scholar 

  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406–425, 1:STN:280:DyaL1c7ovFSjsA%3D%3D, 3447015

    CAS  PubMed  Google Scholar 

  31. Swofford D L. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Sunderland, Sinauer. 2002.

    Google Scholar 

  32. Posada D, Crandall K A. Modeltest: testing the model of DNA substitution. Bioinformatics, 1998, 14: 817–818, 10.1093/bioinformatics/14.9.817, 1:CAS:528:DyaK1MXktlCltw%3D%3D, 9918953

    Article  CAS  PubMed  Google Scholar 

  33. Nixon K C. The Parsimony Ratchet, a new method for rapid parsimony analysis. Cladistics, 1999, 15: 407–414, 10.1111/j.1096-0031.1999.tb00277.x

    Article  Google Scholar 

  34. Vos R A. Accelerated likelihood surface exploration: the likelihood ratchet. Syst Biol, 2003, 52: 368–373, 1:STN:280:DC%2BD3s3lt1Cruw%3D%3D, 12775525

    Article  CAS  PubMed  Google Scholar 

  35. Sikes D S, Lewis P O. Beta software, version 1. PAUPRat: PAUP implementation of the parsimony ratchet. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs. 2001.

    Google Scholar 

  36. Jones D T, Taylor W R, Thornton J M. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci, 1992, 8: 275–282, 1:CAS:528:DyaK38Xlt1Okt7w%3D, 1633570

    CAS  PubMed  Google Scholar 

  37. Yi Z, Song W, Warren A, et al. A molecular phylogenetic investigation of Pseudoamphisiella and Parabirojimia (Protozoa, Ciliophora, Spirotrichea), two genera with ambiguous systematic positions. Eur J Protistol, 2008, 44: 45–53, 10.1016/j.ejop.2007.08.002, 17900880

    Article  PubMed  Google Scholar 

  38. De Rijk P, De Wachter R. RNAViz, a program for the visualisation of RNA secondary structure. Nucl Acids Res, 1997, 25: 4679–4684, 10.1093/nar/25.22.4679, 9358182

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li L, Song W, Warren A, et al. Reconsideration of the phylogenetic positions of five peritrich genera — Vorticella, Pseudovorticella, Zoothamnopsis, Zoothamnium and Epicarchesium (Ciliophora; Peritrichia; Sessilida), based on small subunit rRNA gene sequences. J Eu karyot Microbiol, 2008, 55: 448–456, 10.1111/j.1550-7408.2008.00351.x, 1:CAS:528:DC%2BD1cXhsVWju77O

    Article  CAS  Google Scholar 

  40. Neefs J M, Van De Peer Y, De Rijk P, et al. Compilation of small ribosomal subunit RNA structures. Nucl. Acids Res, 1993, 21: 3025–3049, 10.1093/nar/21.13.3025, 1:CAS:528:DyaK3sXkvV2itL4%3D, 8332525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lynn D H. Systematics of Ciliates. In Hausmann, K., Bradbury, P.C. (eds.) Ciliates: Cells as Organisms. Gustav Fischer Verlag, Stuttgart. 1996, pp. 51–72.

    Google Scholar 

  42. Foissner W, Moon-Van Der Staay S Y, Van Der Staay G W M, et al. Reconciling classical and molecular phylogenies in the stichotrichines (Ciliophora, Spirotrichea), including new sequences from some rare species. Eur J Protistol, 2004, 40: 265–281, 10.1016/j.ejop.2004.05.004

    Article  Google Scholar 

  43. Clements K D, Gray R D, Choat J H. Rapid evolutionary divergences in reef fishes of the family Acanthuridae (Perci-formes: Teleostei). Mol Phylo Evol, 2003, 26: 190–201, 10.1016/S1055-7903(02)00325-1, 1:CAS:528:DC%2BD3sXmt1WqsQ%3D%3D

    Article  CAS  Google Scholar 

  44. Moreira D, Le Guyader H, Philippe H. Unusually high evolutionary rate of the elongation factor lar genes from the ciliophora and its impact on the phylogeny of eukaryotes. Mol Biol Evol, 1999, 16: 234–245, 1:CAS:528:DyaK1MXht1elt78%3D, 10028290

    Article  CAS  PubMed  Google Scholar 

  45. Ruthmann A, Hauser M. Mitosis-like macronuclear division in a ciliate. Chromosoma, 1974, 45: 261–272, 10.1007/BF00283410, 1:CAS:528:DyaE2cXkslCmuro%3D, 4209732

    Article  CAS  PubMed  Google Scholar 

  46. Ammermann D. Die Kernverhältnisse des Ciliaten Protocruzia depressa n. sp. Arch Protistenkd, 1968, 110: 434–438

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiBo Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Thorsten, S., Kyoon, S.M. et al. Protocruzia, a highly ambiguous ciliate (Protozoa; Ciliophora): Very likely an ancestral form for Heterotrichea, Colpodea or Spirotrichea? With reevaluation of its evolutionary position based on multigene analyses. Sci. China Life Sci. 53, 131–138 (2010). https://doi.org/10.1007/s11427-010-0012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0012-9

Keywords

Navigation