Skip to main content
Log in

Interrogating cell signalling network sensitively monitors cell fate transition during early differentiation of mouse embryonic stem cells

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The different cell types in an animal are often considered to be specified by combinations of transcription factors, and defined by marker gene expression. This paradigm is challenged, however, in stem cell research and application. Using a mouse embryonic stem cell (mESC) culture system, here we show that the expression level of many key stem cell marker genes/transcription factors such as Oct4, Sox2 and Nanog failed to monitor cell status transition during mESC differentiation. On the other hand, the response patterns of cell signalling network to external stimuli, as monitored by the dynamics of protein phosphorylation, changed dramatically. Our results also suggest that an irreversible alternation in cell signalling network precedes the adjustment of transcription factor levels. This is consistent with the notion that signal transduction events regulate cell fate specification. We propose that interrogating cell signalling network can assess the cell property more precisely, and provide a sensitive measurement for the early events in cell fate transition. We wish to bring up attention to the potential problem of cell identification using a few marker genes, and suggest a novel methodology to address this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev, 2005, 19: 1129–1155, 10.1101/gad.1303605, 1:CAS:528:DC%2BD2MXksFKnurg%3D, 15905405

    Article  CAS  PubMed  Google Scholar 

  2. Brivanlou A H, Gage F H, Jaenisch R, et al. Stem cells. Setting standards for human embryonic stem cells. Science, 2003, 300: 913–916, 10.1126/science.1082940, 1:CAS:528:DC%2BD3sXksFWjsLw%3D, 12738841

    Article  CAS  PubMed  Google Scholar 

  3. Gilbert S F. Developmental Biology. Sunderland (MA): Sinauer Associates, Inc. 2000

    Google Scholar 

  4. Hanna J, Markoulaki S, Schorderet P, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 2008, 133: 250–264, 10.1016/j.cell.2008.03.028, 1:CAS:528:DC%2BD1cXltlWnu78%3D, 18423197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131: 861–872, 10.1016/j.cell.2007.11.019, 1:CAS:528:DC%2BD2sXhsVCntbbK, 18035408

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126: 663–676, 10.1016/j.cell.2006.07.024, 1:CAS:528:DC%2BD28Xpt1aktbs%3D, 16904174

    Article  CAS  PubMed  Google Scholar 

  7. Irish J M, Hovland R, Krutzik P O, et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell, 2004, 118: 217–228, 10.1016/j.cell.2004.06.028, 1:CAS:528:DC%2BD2cXmtlKntrs%3D, 15260991

    Article  CAS  PubMed  Google Scholar 

  8. Irish J M, Kotecha N, Nolan G P. Mapping normal and cancer cell signalling networks: Towards single-cell proteomics. Nat Rev Cancer, 2006, 6: 146–155, 10.1038/nrc1804, 1:CAS:528:DC%2BD28Xht1els7g%3D, 16491074

    Article  CAS  PubMed  Google Scholar 

  9. Janes K A, Albeck J G, Gaudet S, et al. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science, 2005, 310: 1646–1653, 10.1126/science.1116598, 1:CAS:528:DC%2BD2MXhtlSntb%2FM, 16339439

    Article  CAS  PubMed  Google Scholar 

  10. Miller-Jensen K, Janes K A, Brugge J S, et al. Common effector processing mediates cell-specific responses to stimuli. Nature, 2007, 448: 604–608, 10.1038/nature06001, 1:CAS:528:DC%2BD2sXosVSrtrY%3D, 17637676

    Article  CAS  PubMed  Google Scholar 

  11. Williams R L, Hilton D J, Pease S, et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 1988, 336: 684–687, 10.1038/336684a0, 1:CAS:528:DyaL1MXntlKitg%3D%3D, 3143916

    Article  CAS  PubMed  Google Scholar 

  12. Smith A G, Heath J K, Donaldson D D, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 1988, 336: 688–690, 10.1038/336688a0, 1:CAS:528:DyaL1MXntlKitw%3D%3D, 3143917

    Article  CAS  PubMed  Google Scholar 

  13. Palmqvist L, Glover C H, Hsu L, et al. Correlation of murine embryonic stem cell gene expression profiles with functional measures of pluripotency. Stem Cells, 2005, 23: 663–680, 10.1634/stemcells.2004-0157, 1:CAS:528:DC%2BD2MXltVWmu7g%3D, 15849174

    Article  CAS  PubMed  Google Scholar 

  14. Glover C H, Marin M, Eaves C J, et al. Meta-analysis of differentiating mouse embryonic stem cell gene expression kinetics reveals early change of a small gene set. PLoS Comput Biol, 2006, 2: e–158, 10.1371/journal.pcbi.0020158

    Article  Google Scholar 

  15. Sekkaï D, Gruel G, Herry M, et al. Microarray analysis of LIF/Stat3 transcriptional targets in embryonic stem cells. Stem Cells, 2005, 23: 1634–1642, 10.1634/stemcells.2005-0182, 16099994

    Article  PubMed  Google Scholar 

  16. Walker E, Ohishi M, Davey R E, et al. Prediction and testing of novel transcriptional networks regulating embryonic stem cell self-renewal and commitment. Cell Stem Cell, 2007, 1: 71–86, 10.1016/j.stem.2007.04.002, 1:CAS:528:DC%2BD2sXptV2rs78%3D, 18371337

    Article  CAS  PubMed  Google Scholar 

  17. Niwa H, Ogawa K, Shimosato D, et al. A parallel circuit for LIF signaling pathways maintains pluripotency of mouse ES cells. Nature, 2009, 460: 118–122, 10.1038/nature08113, 1:CAS:528:DC%2BD1MXotVSgu7Y%3D, 19571885

    Article  CAS  PubMed  Google Scholar 

  18. Prudhomme W, Daley G Q, Zandstra P, et al. Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. Proc Natl Acad. Sci. USA, 2004, 101: 2900–2905, 10.1073/pnas.0308768101, 1:CAS:528:DC%2BD2cXitlWhsLo%3D, 14978270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burdon T, Smith A, Savatier P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol, 2002, 12: 432–438, 10.1016/S0962-8924(02)02352-8, 1:CAS:528:DC%2BD38XmvVWlt7s%3D, 12220864

    Article  CAS  PubMed  Google Scholar 

  20. Chambers I. The molecular basis of pluripotency in mouse embryonic stem cells. Cloning Stem Cells, 2004, 6: 386–391, 10.1089/clo.2004.6.386, 1:CAS:528:DC%2BD2MXisFKmuw%3D%3D, 15671667

    Article  CAS  PubMed  Google Scholar 

  21. Kristensen D M, Kalisz M, Nielsen J H. Cytokine signalling in embryonic stem cells. APMIS, 2005, 113: 756–772, 10.1111/j.1600-0463.2005.apm_391.x, 1:CAS:528:DC%2BD28XjtFegs7Y%3D, 16480448

    Article  CAS  PubMed  Google Scholar 

  22. Chuykin I A, Lianguzova M S, Pospelov V A. Signaling pathways regulating proliferation of mouse embryonic stem cells. Cell Tissue Biol, 2007, 1: 191–205, 10.1134/S1990519X07030017

    Article  Google Scholar 

  23. Ying Q L, Nichols J, Chambers I, et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 2003, 115: 281–292, 10.1016/S0092-8674(03)00847-X, 1:CAS:528:DC%2BD3sXovFClu7c%3D, 14636556

    Article  CAS  PubMed  Google Scholar 

  24. Duval D, Reinhardt B, Kedinger C, et al. Role of suppressors of cytokine signaling (Socs) in leukemia inhibitory factor (LIF)-dependent embryonic stem cell survival. FASEB J, 2000, 14: 1577–1584, 10.1096/fj.14.11.1577, 1:CAS:528:DC%2BD3cXlslaqt7g%3D, 10928992

    Article  CAS  PubMed  Google Scholar 

  25. Eswarakumar V P, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev, 2005, 16: 139–149, 10.1016/j.cytogfr.2005.01.001, 1:CAS:528:DC%2BD2MXjvVOns7k%3D, 15863030

    Article  CAS  PubMed  Google Scholar 

  26. Tsang M, Dawid I B. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci STKE, 2004, 228: pe17, 10.1126/stke.2282004pe17

    Google Scholar 

  27. Raz R, Lee C K, Cannizzaro L A, et al. Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci USA, 1999, 96: 2846–2851, 10.1073/pnas.96.6.2846, 1:CAS:528:DyaK1MXhvFyksrg%3D, 10077599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsuda T, Nakamura T, Nakao K, et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J, 1999, 18: 4261–4269, 10.1093/emboj/18.15.4261, 1:CAS:528:DyaK1MXlt1GqsLg%3D, 10428964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Niwa H, Burdon T, Chambers I, et al. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev, 1998, 12: 2048–2060, 10.1101/gad.12.13.2048, 1:CAS:528:DyaK1cXksFygtbk%3D, 9649508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiCao Yue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, Z., Zhuang, F., Liu, YH. et al. Interrogating cell signalling network sensitively monitors cell fate transition during early differentiation of mouse embryonic stem cells. Sci. China Life Sci. 53, 78–86 (2010). https://doi.org/10.1007/s11427-010-0010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0010-y

Keywords

Navigation