Skip to main content
Log in

microRNA-181b targets MLK2 in HL-60 cells

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

microRNAs (miRNAs) play critical roles in many different cellular processes, including metabolism, apoptosis, differentiation and development. We showed miR-181b to be highly expressed in acute myeloid leukemia (AML). Furthermore, miR-181b contributed to proliferation of AML cells by targeting MLK2. Our results demonstrated that miR-181b plays an important role in the biology of AML and may be useful in developing therapies targeting miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Löwenberg B, Downing J R, Burnett A. Acute myeloid leukemia. N Engl J Med, 1999, 341: 1051–1062, 10.1056/NEJM199909303411407, 10502596

    Article  PubMed  Google Scholar 

  2. Wheatley K, Burnett A K, Goldstone A H, et al. A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukemia derived from the MRC AML 10 trial. Br J Haematol, 1999, 107: 69–79, 10.1046/j.1365-2141.1999.01684.x, 1:STN:280:DyaK1MvltV2ntw%3D%3D, 10520026

    Article  CAS  PubMed  Google Scholar 

  3. Kottaridis P D, Gale R E, Frew M E, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: Analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood, 2001, 98: 1752–17599, 10.1182/blood.V98.6.1752, 1:CAS:528:DC%2BD3MXntFWgsbg%3D, 11535508

    Article  CAS  PubMed  Google Scholar 

  4. Whitman S P, Archer K J, Feng L, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: A cancer and leukemia group B study. Cancer Res, 2001, 61: 7233–7239, 1:CAS:528:DC%2BD3MXnsVeht7c%3D, 11585760

    CAS  PubMed  Google Scholar 

  5. Xie X, Lu J, Kulbokas E J, et al. Systematic discovery of regulatory motifs in human promoters and 3′UTRs by comparison of several mammals. Nature, 2005, 434: 338–345, 10.1038/nature03441, 1:CAS:528:DC%2BD2MXit1yqsrk%3D, 15735639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines,indicates that thousands of human genes are microRNA targets. Cell, 2005, 120: 15–20, 10.1016/j.cell.2004.12.035, 1:CAS:528:DC%2BD2MXot1ChsA%3D%3D, 15652477

    Article  CAS  PubMed  Google Scholar 

  7. Bartel D P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281–297, 10.1016/S0092-8674(04)00045-5, 1:CAS:528:DC%2BD2cXhtVals7o%3D, 14744438

    Article  CAS  PubMed  Google Scholar 

  8. Hiyoshi Y, Kamohara H, Karashima R, et al. microRNA-21 Regulates the Proliferation and Invasion in Esophageal Squamous Cell Carcinoma. Clin Cancer Res, 2009, 15: 1915–1922, 10.1158/1078-0432.CCR-08-2545, 1:CAS:528:DC%2BD1MXjtF2rsL0%3D, 19276261

    Article  CAS  PubMed  Google Scholar 

  9. Aguda B D, Kim Y, Piper-Hunter M G, et al. microRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Aead Sci USA, 2008, 105: 19678–19683, 10.1073/pnas.0811166106, 1:CAS:528:DC%2BD1cXhsFCltr3O

    Article  CAS  Google Scholar 

  10. Mathonnet G, Fabian M R, Svitkin Y V, et al. microRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science, 2007, 317: 1764–1767, 10.1126/science.1146067, 1:CAS:528:DC%2BD2sXhtVGmsLbO, 17656684

    Article  CAS  PubMed  Google Scholar 

  11. Garzon R, Volinia S, Liu C G, et al. microRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008, 111: 3183–3189, 10.1182/blood-2007-07-098749, 1:CAS:528:DC%2BD1cXjvVamtbY%3D, 18187662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mi S, Lu J, Sun M, et al. microRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA, 2007, 104: 19971–19976, 10.1073/pnas.0709313104, 1:CAS:528:DC%2BD1cXhs1Wmtw%3D%3D, 18056805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dixon-McIver A, East P, Mein C A, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS ONE, 2008, 3: e2141, 10.1371/journal.pone.0002141, 18478077

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marcucci G, Radmacher M D, Maharry K, et al. microRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med, 2008, 358: 1919–1928, 10.1056/NEJMoa074256, 1:CAS:528:DC%2BD1cXlt1Gnsr0%3D, 18450603

    Article  CAS  PubMed  Google Scholar 

  15. Xi Y, Formentini A, Chien M, et al. Prognostic Values of microRNAs in colorectal cancer. Biomark Insights, 2006, 2: 113–121, 18079988

    PubMed  Google Scholar 

  16. Pallante P, Visone R, Ferracin M, et al. microRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer, 2006, 13: 497–508, 10.1677/erc.1.01209, 1:CAS:528:DC%2BD28XntF2mtLc%3D, 16728577

    Article  CAS  PubMed  Google Scholar 

  17. Pekarsky Y, Santanam U, Cimmino A, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res, 2006, 66: 11590–11593, 10.1158/0008-5472.CAN-06-3613, 1:CAS:528:DC%2BD28XhtlagurjF, 17178851

    Article  CAS  PubMed  Google Scholar 

  18. Wu W, Pew T, Zou M, et al. Glucocorticoid Receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J Biol Chem, 2005, 280: 4117–4124, 10.1074/jbc.M411200200, 1:CAS:528:DC%2BD2MXhtVyntbo%3D, 15590693

    Article  CAS  PubMed  Google Scholar 

  19. Valledor A F, Arpa L, Sánchez-Tilló E, et al. IFN -“gamma”-mediated inhibition of MAPK phosphatase expression results in prolonged MAPK activity in response to M-CSF and inhibition of proliferation. Blood, 2008, 112: 3274–3282, 10.1182/blood-2007-11-123604, 1:CAS:528:DC%2BD1cXht1OmurzI, 18682602

    Article  CAS  PubMed  Google Scholar 

  20. Takada Y, Sethi G, Sung B, et al. Flavopiridol suppresses tumor necrosis factor-Induced activation of activator Protein-1, c-Jun N-Terminal Kinase, p38 Mitogen-Activated Protein Kinase (MAPK), p44/p42 MAPK, and Akt, inhibits expression of antiapoptotic gene products, and enhances apoptosis through cytochrome c Release and caspase activation in human myeloid cells. Mol Pharmacol, 2008, 73: 1549–1557, 10.1124/mol.107.041350, 1:CAS:528:DC%2BD1cXlsVWgu7k%3D, 18287248

    Article  CAS  PubMed  Google Scholar 

  21. Kim J M, White J M, Shaw A S, et al. MAPK p38 alpha is dispensable for lymphocyte development and proliferation. J Immunol, 2005, 174: 1239–1244, 1:CAS:528:DC%2BD2MXlsFyhsg%3D%3D, 15661878

    Article  CAS  PubMed  Google Scholar 

  22. Tran S E, Holmstrom T H, Ahonen M, et al. MAPK/ERK Overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem, 2001, 276: 16484–16490, 10.1074/jbc.M010384200, 1:CAS:528:DC%2BD3MXjvFarsro%3D, 11278665

    Article  CAS  PubMed  Google Scholar 

  23. Chen C, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005, 33: e179, 10.1093/nar/gni178, 16314309

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shi L, Cheng Z, Zhang J, et al. hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res, 2008, 1236: 185–193, 10.1016/j.brainres.2008.07.085, 1:CAS:528:DC%2BD1cXht1SitL%2FE, 18710654

    Article  CAS  PubMed  Google Scholar 

  25. de Yébenes V G, Belver L, Pisano D G, et al. MiR-181b negatively regulates activation-induced cytidine deaminase in B cells. J Exp Med, 2008, 205: 2199–2206, 10.1084/jem.20080579, 18762567

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nakajima G, Hayashi K, Xi Y, et al. Non-coding microRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics, 2006, 3: 317–324, 1:CAS:528:DC%2BD28XhtFygsrjL, 18172508

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Phelan D R, Price G, Liu Y F, et al. Activated JNK phosphorylates the c-terminal domain of MLK2 that is required for MLK2-induced apoptosis. J Biol Chem, 2001, 276: 10801–10810, 10.1074/jbc.M008237200, 1:CAS:528:DC%2BD3MXjvFCqtbo%3D, 11278395

    Article  CAS  PubMed  Google Scholar 

  28. Xu Z, Maroney A C, Dobrzanski P, et al. The MLK family mediates c-Jun N-Terminal kinase activation in neuronal apoptosis. Mol Cell Biol, 2001, 21: 4713–4724, 10.1128/MCB.21.14.4713-4724.2001, 1:CAS:528:DC%2BD3MXks1Gju7k%3D, 11416147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim K Y, Kim B C, Xu Z, et al. Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-β-induced apoptosis in hepatoma cells. J Biol Chem, 2004, 279: 29478–29484, 10.1074/jbc.M313947200, 1:CAS:528:DC%2BD2cXlsVCmurk%3D, 15069087

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y F, Dorow D, Marshall J. Activation of MLK2-mediated signaling cascades by polyglutamine-expanded Huntingtin. J Biol Chem, 2000, 275: 19035–19040, 10.1074/jbc.C000180200, 1:CAS:528:DC%2BD3cXksVGktbg%3D, 10801775

    Article  CAS  PubMed  Google Scholar 

  31. Robinson M J, Cobb M H. Mitogen-activated kinase pathways. Curr Opin Cell Biol, 1997, 9: 180–186, 10.1016/S0955-0674(97)80061-0, 1:CAS:528:DyaK2sXisVWntLk%3D, 9069255

    Article  CAS  PubMed  Google Scholar 

  32. Rana A, Gallo K, Godowski P, et al. The mixed lineage kinase SPRK phosphorylates and activates the stress-activated protein kinase activator, SEK-1. J Biol Chem, 1996, 271: 19025–19028, 10.1074/jbc.271.32.19025, 1:CAS:528:DyaK28XkvFynsrs%3D, 8702571

    Article  CAS  PubMed  Google Scholar 

  33. Tibbles L A, Ing Y L, Kiefer F, et al. MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J, 1996, 15: 7026–7035, 1:CAS:528:DyaK2sXosFClsA%3D%3D, 9003778

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Teramoto H, Coso O A, Miyata H, et al. Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem, 1996, 271: 27225–27228, 10.1074/jbc.271.8.3963, 1:CAS:528:DyaK28XmvVWmsr8%3D, 8910292

    Article  CAS  PubMed  Google Scholar 

  35. Hirai S, Katoh M, Terada M, et al. MST/MLK2, a member of the mixed lineage kinase family, directly phosphorylates and activates SEK1, an activator of c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem, 1997, 272: 15167–15173, 10.1074/jbc.272.24.15167, 1:CAS:528:DyaK2sXjvFOntb4%3D, 9182538

    Article  CAS  PubMed  Google Scholar 

  36. Zhong J, Kyriakis J M. Dissection of a signaling pathway by which pathogen-associated molecular patterns recruit the JNK and p38 MAPKs and trigger cytokine release. J Biol Chem, 2007, 282: 24246–24254, 10.1074/jbc.M703422200, 1:CAS:528:DC%2BD2sXoslOnuro%3D, 17584736

    Article  CAS  PubMed  Google Scholar 

  37. Brown L, Benchimol S. The involvement of MAPK signaling pathways in determining the cellular response to p53 activation: cell cycle arrest or apoptosis. J Biol Chem, 2006, 281: 3832–3840, 10.1074/jbc.M507951200, 1:CAS:528:DC%2BD28XhtlKksbw%3D, 16330547

    Article  CAS  PubMed  Google Scholar 

  38. Pruitt K, Pruitt W M, Bilter G K, et al. Raf-independent deregulation of p38 and JNK mitogen-activated protein kinases are critical for ras transformation. J Biol Chem. 2002, 277: 31808–31817, 10.1074/jbc.M203964200, 1:CAS:528:DC%2BD38XmslOqtLc%3D, 12082106

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Mi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Chen, Q., Fang, M. et al. microRNA-181b targets MLK2 in HL-60 cells. Sci. China Life Sci. 53, 101–106 (2010). https://doi.org/10.1007/s11427-010-0002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0002-y

Keywords

Navigation